Documentation

LeanCamCombi.Mathlib.Order.Partition.Finpartition

def Finpartition.finsetImage {α : Type u_1} {β : Type u_2} [DecidableEq α] [DecidableEq β] {a : Finset α} (P : Finpartition a) (f : αβ) (hf : Function.Injective f) :
Equations
  • P.finsetImage f hf = { parts := Finset.image (Finset.image f) P.parts, supIndep := , sup_parts := , not_bot_mem := }
Instances For
    @[simp]
    theorem Finpartition.finsetImage_parts {α : Type u_1} {β : Type u_2} [DecidableEq α] [DecidableEq β] {a : Finset α} (P : Finpartition a) (f : αβ) (hf : Function.Injective f) :
    (P.finsetImage f hf).parts = Finset.image (Finset.image f) P.parts
    def Finpartition.extend' {α : Type u_1} [DecidableEq α] [DistribLattice α] [OrderBot α] {a b c : α} (P : Finpartition a) (hab : Disjoint a b) (hc : a b = c) :
    Equations
    • P.extend' hab hc = if hb : b = then P.copy else P.extend hb hab hc
    Instances For
      def Finpartition.modPartitions (s d : ) (hd : d 0) (h : d s) :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem Finpartition.modPartitions_parts_eq (s d : ) (hd : d 0) (h : d s) :
        (Finpartition.modPartitions s d hd h).parts = Finset.image (fun (i : ) => Finset.image (fun (x : ) => i + d * x) (Finset.range ((s - i - 1) / d + 1))) (Finset.range d)