The Minkowski-Carathéodory theorem #
theorem
convexHull_extremePoints
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{s : Set E}
(hscomp : IsCompact s)
(hsconv : Convex ℝ s)
:
(convexHull ℝ) (Set.extremePoints ℝ s) = s
The Minkowski-Carathéodory Theorem. A compact convex set in a finite dimensional space is the convex hull of its extreme points.
theorem
closed_convexHull_extremePoints_of_compact_of_convex
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
[FiniteDimensional ℝ E]
{s : Set E}
(hscomp : IsCompact s)
(hsconv : Convex ℝ s)
:
IsClosed ((convexHull ℝ) (Set.extremePoints ℝ s))