Stable binary relations #
@[simp]
theorem
not_isStableRelWith
{α : Type u_1}
{β : Type u_2}
{n : ℕ}
{r : α → β → Prop}
:
¬IsStableRelWith n r ↔ IsOrderPropRelWith n r
@[simp]
theorem
not_isOrderPropRelWith
{α : Type u_1}
{β : Type u_2}
{n : ℕ}
{r : α → β → Prop}
:
¬IsOrderPropRelWith n r ↔ IsStableRelWith n r
@[simp]
@[simp]
theorem
IsStableRelWith.isTreeBoundedRelWith
{α : Type u_1}
{β : Type u_2}
{n : ℕ}
{r : α → β → Prop}
(hr : IsStableRelWith n r)
:
IsTreeBoundedRelWith (2 ^ n + 1) r
theorem
IsTreeBoundedRelWith.isStableRelWith
{α : Type u_1}
{β : Type u_2}
{n : ℕ}
{r : α → β → Prop}
(hr : IsTreeBoundedRelWith n r)
:
IsStableRelWith (2 ^ n) r