Documentation

Mathlib.Algebra.Associated.Basic

Associated elements. #

In this file we define an equivalence relation Associated saying that two elements of a monoid differ by a multiplication by a unit. Then we show that the quotient type Associates is a monoid and prove basic properties of this quotient.

def Associated {M : Type u_1} [Monoid M] (x y : M) :

Two elements of a Monoid are Associated if one of them is another one multiplied by a unit on the right.

Equations
Instances For
    theorem Associated.refl {M : Type u_1} [Monoid M] (x : M) :
    theorem Associated.rfl {M : Type u_1} [Monoid M] {x : M} :
    theorem Associated.symm {M : Type u_1} [Monoid M] {x y : M} :
    theorem Associated.comm {M : Type u_1} [Monoid M] {x y : M} :
    theorem Associated.trans {M : Type u_1} [Monoid M] {x y z : M} :
    Associated x yAssociated y zAssociated x z
    def Associated.setoid (M : Type u_2) [Monoid M] :

    The setoid of the relation x ~ᵤ y iff there is a unit u such that x * u = y

    Equations
    Instances For
      theorem Associated.map {M : Type u_2} {N : Type u_3} [Monoid M] [Monoid N] {F : Type u_4} [FunLike F M N] [MonoidHomClass F M N] (f : F) {x y : M} (ha : Associated x y) :
      Associated (f x) (f y)
      theorem unit_associated_one {M : Type u_1} [Monoid M] {u : Mˣ} :
      Associated (↑u) 1
      @[simp]
      theorem associated_one_iff_isUnit {M : Type u_1} [Monoid M] {a : M} :
      @[simp]
      theorem associated_zero_iff_eq_zero {M : Type u_1} [MonoidWithZero M] (a : M) :
      Associated a 0 a = 0
      theorem associated_one_of_mul_eq_one {M : Type u_1} [CommMonoid M] {a : M} (b : M) (hab : a * b = 1) :
      theorem associated_one_of_associated_mul_one {M : Type u_1} [CommMonoid M] {a b : M} :
      Associated (a * b) 1Associated a 1
      theorem associated_mul_unit_left {N : Type u_2} [Monoid N] (a u : N) (hu : IsUnit u) :
      Associated (a * u) a
      theorem associated_unit_mul_left {N : Type u_2} [CommMonoid N] (a u : N) (hu : IsUnit u) :
      Associated (u * a) a
      theorem associated_mul_unit_right {N : Type u_2} [Monoid N] (a u : N) (hu : IsUnit u) :
      Associated a (a * u)
      theorem associated_unit_mul_right {N : Type u_2} [CommMonoid N] (a u : N) (hu : IsUnit u) :
      Associated a (u * a)
      theorem associated_mul_isUnit_left_iff {N : Type u_2} [Monoid N] {a u b : N} (hu : IsUnit u) :
      theorem associated_isUnit_mul_left_iff {N : Type u_2} [CommMonoid N] {u a b : N} (hu : IsUnit u) :
      theorem associated_mul_isUnit_right_iff {N : Type u_2} [Monoid N] {a b u : N} (hu : IsUnit u) :
      theorem associated_isUnit_mul_right_iff {N : Type u_2} [CommMonoid N] {a u b : N} (hu : IsUnit u) :
      @[simp]
      theorem associated_mul_unit_left_iff {N : Type u_2} [Monoid N] {a b : N} {u : Nˣ} :
      Associated (a * u) b Associated a b
      @[simp]
      theorem associated_unit_mul_left_iff {N : Type u_2} [CommMonoid N] {a b : N} {u : Nˣ} :
      Associated (u * a) b Associated a b
      @[simp]
      theorem associated_mul_unit_right_iff {N : Type u_2} [Monoid N] {a b : N} {u : Nˣ} :
      Associated a (b * u) Associated a b
      @[simp]
      theorem associated_unit_mul_right_iff {N : Type u_2} [CommMonoid N] {a b : N} {u : Nˣ} :
      Associated a (u * b) Associated a b
      theorem Associated.mul_left {M : Type u_1} [Monoid M] (a : M) {b c : M} (h : Associated b c) :
      Associated (a * b) (a * c)
      theorem Associated.mul_right {M : Type u_1} [CommMonoid M] {a b : M} (h : Associated a b) (c : M) :
      Associated (a * c) (b * c)
      theorem Associated.mul_mul {M : Type u_1} [CommMonoid M] {a₁ a₂ b₁ b₂ : M} (h₁ : Associated a₁ b₁) (h₂ : Associated a₂ b₂) :
      Associated (a₁ * a₂) (b₁ * b₂)
      theorem Associated.pow_pow {M : Type u_1} [CommMonoid M] {a b : M} {n : } (h : Associated a b) :
      Associated (a ^ n) (b ^ n)
      theorem Associated.dvd {M : Type u_1} [Monoid M] {a b : M} :
      Associated a ba b
      theorem Associated.dvd' {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
      b a
      theorem Associated.dvd_dvd {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
      a b b a
      theorem associated_of_dvd_dvd {M : Type u_1} [CancelMonoidWithZero M] {a b : M} (hab : a b) (hba : b a) :
      theorem dvd_dvd_iff_associated {M : Type u_1} [CancelMonoidWithZero M] {a b : M} :
      a b b a Associated a b
      instance instDecidableRelAssociatedOfDvd {M : Type u_1} [CancelMonoidWithZero M] [DecidableRel fun (x1 x2 : M) => x1 x2] :
      DecidableRel fun (x1 x2 : M) => Associated x1 x2
      Equations
      theorem Associated.dvd_iff_dvd_left {M : Type u_1} [Monoid M] {a b c : M} (h : Associated a b) :
      a c b c
      theorem Associated.dvd_iff_dvd_right {M : Type u_1} [Monoid M] {a b c : M} (h : Associated b c) :
      a b a c
      theorem Associated.eq_zero_iff {M : Type u_1} [MonoidWithZero M] {a b : M} (h : Associated a b) :
      a = 0 b = 0
      theorem Associated.ne_zero_iff {M : Type u_1} [MonoidWithZero M] {a b : M} (h : Associated a b) :
      a 0 b 0
      theorem Associated.neg_left {M : Type u_1} [Monoid M] [HasDistribNeg M] {a b : M} (h : Associated a b) :
      theorem Associated.neg_right {M : Type u_1} [Monoid M] [HasDistribNeg M] {a b : M} (h : Associated a b) :
      theorem Associated.neg_neg {M : Type u_1} [Monoid M] [HasDistribNeg M] {a b : M} (h : Associated a b) :
      Associated (-a) (-b)
      theorem Associated.prime {M : Type u_1} [CommMonoidWithZero M] {p q : M} (h : Associated p q) (hp : Prime p) :
      theorem prime_mul_iff {M : Type u_1} [CancelCommMonoidWithZero M] {x y : M} :
      @[simp]
      theorem prime_pow_iff {M : Type u_1} [CancelCommMonoidWithZero M] {p : M} {n : } :
      Prime (p ^ n) Prime p n = 1
      theorem Irreducible.dvd_iff {M : Type u_1} [Monoid M] {x y : M} (hx : Irreducible x) :
      theorem Irreducible.associated_of_dvd {M : Type u_1} [Monoid M] {p q : M} (p_irr : Irreducible p) (q_irr : Irreducible q) (dvd : p q) :
      theorem Irreducible.dvd_irreducible_iff_associated {M : Type u_1} [Monoid M] {p q : M} (pp : Irreducible p) (qp : Irreducible q) :
      theorem Prime.associated_of_dvd {M : Type u_1} [CancelCommMonoidWithZero M] {p q : M} (p_prime : Prime p) (q_prime : Prime q) (dvd : p q) :
      theorem Prime.dvd_prime_iff_associated {M : Type u_1} [CancelCommMonoidWithZero M] {p q : M} (pp : Prime p) (qp : Prime q) :
      theorem Associated.prime_iff {M : Type u_1} [CommMonoidWithZero M] {p q : M} (h : Associated p q) :
      theorem Associated.isUnit {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
      IsUnit aIsUnit b
      theorem Associated.isUnit_iff {M : Type u_1} [Monoid M] {a b : M} (h : Associated a b) :
      theorem Irreducible.isUnit_iff_not_associated_of_dvd {M : Type u_1} [Monoid M] {x y : M} (hx : Irreducible x) (hy : y x) :
      theorem Associated.irreducible {M : Type u_1} [Monoid M] {p q : M} (h : Associated p q) (hp : Irreducible p) :
      theorem Associated.irreducible_iff {M : Type u_1} [Monoid M] {p q : M} (h : Associated p q) :
      theorem Associated.of_mul_left {M : Type u_1} [CancelCommMonoidWithZero M] {a b c d : M} (h : Associated (a * b) (c * d)) (h₁ : Associated a c) (ha : a 0) :
      theorem Associated.of_mul_right {M : Type u_1} [CancelCommMonoidWithZero M] {a b c d : M} :
      Associated (a * b) (c * d)Associated b db 0Associated a c
      theorem Associated.of_pow_associated_of_prime {M : Type u_1} [CancelCommMonoidWithZero M] {p₁ p₂ : M} {k₁ k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁) (h : Associated (p₁ ^ k₁) (p₂ ^ k₂)) :
      Associated p₁ p₂
      theorem Associated.of_pow_associated_of_prime' {M : Type u_1} [CancelCommMonoidWithZero M] {p₁ p₂ : M} {k₁ k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₂ : 0 < k₂) (h : Associated (p₁ ^ k₁) (p₂ ^ k₂)) :
      Associated p₁ p₂
      theorem Irreducible.isRelPrime_iff_not_dvd {M : Type u_1} [Monoid M] {p n : M} (hp : Irreducible p) :

      See also Irreducible.coprime_iff_not_dvd.

      theorem Irreducible.dvd_or_isRelPrime {M : Type u_1} [Monoid M] {p n : M} (hp : Irreducible p) :
      theorem associated_iff_eq {M : Type u_1} [Monoid M] [Subsingleton Mˣ] {x y : M} :
      Associated x y x = y
      theorem prime_dvd_prime_iff_eq {M : Type u_2} [CancelCommMonoidWithZero M] [Subsingleton Mˣ] {p q : M} (pp : Prime p) (qp : Prime q) :
      p q p = q
      theorem eq_of_prime_pow_eq {R : Type u_2} [CancelCommMonoidWithZero R] [Subsingleton Rˣ] {p₁ p₂ : R} {k₁ k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₁) (h : p₁ ^ k₁ = p₂ ^ k₂) :
      p₁ = p₂
      theorem eq_of_prime_pow_eq' {R : Type u_2} [CancelCommMonoidWithZero R] [Subsingleton Rˣ] {p₁ p₂ : R} {k₁ k₂ : } (hp₁ : Prime p₁) (hp₂ : Prime p₂) (hk₁ : 0 < k₂) (h : p₁ ^ k₁ = p₂ ^ k₂) :
      p₁ = p₂
      @[reducible, inline]
      abbrev Associates (M : Type u_2) [Monoid M] :
      Type u_2

      The quotient of a monoid by the Associated relation. Two elements x and y are associated iff there is a unit u such that x * u = y. There is a natural monoid structure on Associates M.

      Equations
      Instances For
        @[reducible, inline]
        abbrev Associates.mk {M : Type u_2} [Monoid M] (a : M) :

        The canonical quotient map from a monoid M into the Associates of M

        Equations
        Instances For
          Equations
          theorem Associates.quotient_mk_eq_mk {M : Type u_1} [Monoid M] (a : M) :
          a = Associates.mk a
          @[simp]
          theorem Associates.quot_out {M : Type u_1} [Monoid M] (a : Associates M) :
          theorem Associates.forall_associated {M : Type u_1} [Monoid M] {p : Associates MProp} :
          (∀ (a : Associates M), p a) ∀ (a : M), p (Associates.mk a)
          instance Associates.instOne {M : Type u_1} [Monoid M] :
          Equations
          @[simp]
          theorem Associates.mk_one {M : Type u_1} [Monoid M] :
          @[simp]
          theorem Associates.mk_eq_one {M : Type u_1} [Monoid M] {a : M} :
          instance Associates.instBot {M : Type u_1} [Monoid M] :
          Equations
          theorem Associates.bot_eq_one {M : Type u_1} [Monoid M] :
          = 1
          theorem Associates.exists_rep {M : Type u_1} [Monoid M] (a : Associates M) :
          ∃ (a0 : M), Associates.mk a0 = a
          Equations
          instance Associates.instMul {M : Type u_1} [CommMonoid M] :
          Equations

          Associates.mk as a MonoidHom.

          Equations
          Instances For
            @[simp]
            theorem Associates.mkMonoidHom_apply {M : Type u_1} [CommMonoid M] (a : M) :
            Associates.mkMonoidHom a = Associates.mk a
            theorem Associates.mk_pow {M : Type u_1} [CommMonoid M] (a : M) (n : ) :
            theorem Associates.dvd_eq_le {M : Type u_1} [CommMonoid M] :
            (fun (x1 x2 : Associates M) => x1 x2) = fun (x1 x2 : Associates M) => x1 x2
            Equations
            @[deprecated mul_eq_one (since := "2024-07-22")]
            theorem Associates.mul_eq_one_iff {α : Type u} [CommMonoid α] [Subsingleton αˣ] {a b : α} :
            a * b = 1 a = 1 b = 1

            Alias of mul_eq_one.

            @[deprecated Subsingleton.elim (since := "2024-07-22")]
            theorem Associates.units_eq_one {α : Sort u} [h : Subsingleton α] (a b : α) :
            a = b

            Alias of Subsingleton.elim.

            @[simp]
            theorem Associates.coe_unit_eq_one {M : Type u_1} [CommMonoid M] (u : (Associates M)ˣ) :
            u = 1
            theorem Associates.mul_mono {M : Type u_1} [CommMonoid M] {a b c d : Associates M} (h₁ : a b) (h₂ : c d) :
            a * c b * d
            theorem Associates.one_le {M : Type u_1} [CommMonoid M] {a : Associates M} :
            1 a
            theorem Associates.le_mul_right {M : Type u_1} [CommMonoid M] {a b : Associates M} :
            a a * b
            theorem Associates.le_mul_left {M : Type u_1} [CommMonoid M] {a b : Associates M} :
            a b * a
            @[simp]
            theorem Associates.mk_dvd_mk {M : Type u_1} [CommMonoid M] {a b : M} :
            @[simp]
            instance Associates.instZero {M : Type u_1} [Zero M] [Monoid M] :
            Equations
            instance Associates.instTopOfZero {M : Type u_1} [Zero M] [Monoid M] :
            Equations
            @[simp]
            theorem Associates.mk_zero {M : Type u_1} [Zero M] [Monoid M] :
            @[simp]
            theorem Associates.mk_eq_zero {M : Type u_1} [MonoidWithZero M] {a : M} :
            @[simp]
            theorem Associates.mk_ne_zero {M : Type u_1} [MonoidWithZero M] {a : M} :
            theorem Associates.exists_non_zero_rep {M : Type u_1} [MonoidWithZero M] {a : Associates M} :
            a 0∃ (a0 : M), a0 0 Associates.mk a0 = a
            @[simp]
            theorem Associates.le_zero {M : Type u_1} [CommMonoidWithZero M] (a : Associates M) :
            a 0
            instance Associates.instDecidableRelDvd {M : Type u_1} [CommMonoidWithZero M] [DecidableRel fun (x1 x2 : M) => x1 x2] :
            DecidableRel fun (x1 x2 : Associates M) => x1 x2
            Equations
            theorem Associates.Prime.le_or_le {M : Type u_1} [CommMonoidWithZero M] {p : Associates M} (hp : Prime p) {a b : Associates M} (h : p a * b) :
            p a p b
            @[simp]
            theorem Associates.dvdNotUnit_of_lt {M : Type u_1} [CommMonoidWithZero M] {a b : Associates M} (hlt : a < b) :
            theorem Associates.le_of_mul_le_mul_left {M : Type u_1} [CancelCommMonoidWithZero M] (a b c : Associates M) (ha : a 0) :
            a * b a * cb c
            theorem Associates.one_or_eq_of_le_of_prime {M : Type u_1} [CancelCommMonoidWithZero M] {p m : Associates M} (hp : Prime p) (hle : m p) :
            m = 1 m = p
            theorem dvdNotUnit_of_dvdNotUnit_associated {M : Type u_1} [CommMonoidWithZero M] [Nontrivial M] {p q r : M} (h : DvdNotUnit p q) (h' : Associated q r) :
            theorem isUnit_of_associated_mul {M : Type u_1} [CancelCommMonoidWithZero M] {p b : M} (h : Associated (p * b) p) (hp : p 0) :
            theorem dvd_prime_pow {M : Type u_1} [CancelCommMonoidWithZero M] {p q : M} (hp : Prime p) (n : ) :
            q p ^ n ∃ (i : ), i n Associated q (p ^ i)