Mul-opposite subgroups #
This file contains a somewhat arbitrary assortment of results on the opposite subgroup H.op
that rely on further theory to define. As such it is a somewhat arbitrary assortment of results,
which might be organized and split up further.
Tags #
subgroup, subgroups
Equations
- H.instVAdd = H.op.vadd
Lattice results #
@[simp]
@[simp]
theorem
AddSubgroup.op_sSup
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup G))
:
(sSup S).op = sSup (AddSubgroup.unop ⁻¹' S)
theorem
AddSubgroup.unop_sSup
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup Gᵃᵒᵖ))
:
(sSup S).unop = sSup (AddSubgroup.op ⁻¹' S)
theorem
AddSubgroup.op_sInf
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup G))
:
(sInf S).op = sInf (AddSubgroup.unop ⁻¹' S)
theorem
AddSubgroup.unop_sInf
{G : Type u_2}
[AddGroup G]
(S : Set (AddSubgroup Gᵃᵒᵖ))
:
(sInf S).unop = sInf (AddSubgroup.op ⁻¹' S)
theorem
AddSubgroup.unop_iSup
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
theorem
AddSubgroup.unop_iInf
{ι : Sort u_1}
{G : Type u_2}
[AddGroup G]
(S : ι → AddSubgroup Gᵃᵒᵖ)
:
theorem
Subgroup.op_closure
{G : Type u_2}
[Group G]
(s : Set G)
:
(Subgroup.closure s).op = Subgroup.closure (MulOpposite.unop ⁻¹' s)
theorem
AddSubgroup.op_closure
{G : Type u_2}
[AddGroup G]
(s : Set G)
:
(AddSubgroup.closure s).op = AddSubgroup.closure (AddOpposite.unop ⁻¹' s)
theorem
Subgroup.unop_closure
{G : Type u_2}
[Group G]
(s : Set Gᵐᵒᵖ)
:
(Subgroup.closure s).unop = Subgroup.closure (MulOpposite.op ⁻¹' s)
theorem
AddSubgroup.unop_closure
{G : Type u_2}
[AddGroup G]
(s : Set Gᵃᵒᵖ)
:
(AddSubgroup.closure s).unop = AddSubgroup.closure (AddOpposite.op ⁻¹' s)
instance
Subgroup.instEncodableSubtypeMulOppositeMemOp
{G : Type u_2}
[Group G]
(H : Subgroup G)
[Encodable ↥H]
:
Encodable ↥H.op
Equations
- H.instEncodableSubtypeMulOppositeMemOp = Encodable.ofEquiv (↥H) H.equivOp.symm
instance
AddSubgroup.instEncodableSubtypeAddOppositeMemOp
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Encodable ↥H]
:
Encodable ↥H.op
Equations
- H.instEncodableSubtypeAddOppositeMemOp = Encodable.ofEquiv (↥H) H.equivOp.symm
instance
AddSubgroup.instCountableSubtypeAddOppositeMemOp
{G : Type u_2}
[AddGroup G]
(H : AddSubgroup G)
[Countable ↥H]
:
Countable ↥H.op
theorem
AddSubgroup.vadd_opposite_add
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
(x g : G)
(h : ↥H.op)
:
@[simp]
theorem
AddSubgroup.normal_op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.op.Normal ↔ H.Normal
Alias of the reverse direction of Subgroup.normal_op
.
Alias of the forward direction of Subgroup.normal_op
.
theorem
AddSubgroup.Normal.of_op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.op.Normal → H.Normal
theorem
AddSubgroup.Normal.op
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
:
H.Normal → H.op.Normal
instance
AddSubgroup.op.instNormal
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup G}
[H.Normal]
:
H.op.Normal
@[simp]
theorem
AddSubgroup.normal_unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.unop.Normal ↔ H.Normal
Alias of the reverse direction of Subgroup.normal_unop
.
theorem
Subgroup.Normal.of_unop
{G : Type u_2}
[Group G]
{H : Subgroup Gᵐᵒᵖ}
:
H.unop.Normal → H.Normal
Alias of the forward direction of Subgroup.normal_unop
.
theorem
AddSubgroup.Normal.of_unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.unop.Normal → H.Normal
theorem
AddSubgroup.Normal.unop
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
:
H.Normal → H.unop.Normal
instance
AddSubgroup.unop.instNormal
{G : Type u_2}
[AddGroup G]
{H : AddSubgroup Gᵃᵒᵖ}
[H.Normal]
:
H.unop.Normal