Documentation

Mathlib.Algebra.Group.Subgroup.ZPowers.Basic

Subgroups generated by an element #

Tags #

subgroup, subgroups

def Subgroup.zpowers {G : Type u_1} [Group G] (g : G) :

The subgroup generated by an element.

Equations
Instances For
    def AddSubgroup.zmultiples {G : Type u_1} [AddGroup G] (g : G) :

    The additive subgroup generated by an element.

    Equations
    Instances For
      @[simp]
      theorem Subgroup.mem_zpowers {G : Type u_1} [Group G] (g : G) :
      @[simp]
      theorem Subgroup.coe_zpowers {G : Type u_1} [Group G] (g : G) :
      (Subgroup.zpowers g) = Set.range fun (x : ) => g ^ x
      theorem AddSubgroup.coe_zmultiples {G : Type u_1} [AddGroup G] (g : G) :
      (AddSubgroup.zmultiples g) = Set.range fun (x : ) => x g
      noncomputable instance Subgroup.decidableMemZPowers {G : Type u_1} [Group G] {a : G} :
      Equations
      theorem Subgroup.mem_zpowers_iff {G : Type u_1} [Group G] {g h : G} :
      h Subgroup.zpowers g ∃ (k : ), g ^ k = h
      theorem AddSubgroup.mem_zmultiples_iff {G : Type u_1} [AddGroup G] {g h : G} :
      h AddSubgroup.zmultiples g ∃ (k : ), k g = h
      @[simp]
      theorem Subgroup.zpow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : ) :
      @[simp]
      @[simp]
      theorem Subgroup.npow_mem_zpowers {G : Type u_1} [Group G] (g : G) (k : ) :
      @[simp]
      @[simp]
      theorem Subgroup.forall_zpowers {G : Type u_1} [Group G] {x : G} {p : (Subgroup.zpowers x)Prop} :
      (∀ (g : (Subgroup.zpowers x)), p g) ∀ (m : ), p x ^ m,
      @[simp]
      theorem AddSubgroup.forall_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : (AddSubgroup.zmultiples x)Prop} :
      (∀ (g : (AddSubgroup.zmultiples x)), p g) ∀ (m : ), p m x,
      @[simp]
      theorem Subgroup.exists_zpowers {G : Type u_1} [Group G] {x : G} {p : (Subgroup.zpowers x)Prop} :
      (∃ (g : (Subgroup.zpowers x)), p g) ∃ (m : ), p x ^ m,
      @[simp]
      theorem AddSubgroup.exists_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : (AddSubgroup.zmultiples x)Prop} :
      (∃ (g : (AddSubgroup.zmultiples x)), p g) ∃ (m : ), p m x,
      theorem Subgroup.forall_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : GProp} :
      (∀ gSubgroup.zpowers x, p g) ∀ (m : ), p (x ^ m)
      theorem AddSubgroup.forall_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : GProp} :
      (∀ gAddSubgroup.zmultiples x, p g) ∀ (m : ), p (m x)
      theorem Subgroup.exists_mem_zpowers {G : Type u_1} [Group G] {x : G} {p : GProp} :
      (∃ gSubgroup.zpowers x, p g) ∃ (m : ), p (x ^ m)
      theorem AddSubgroup.exists_mem_zmultiples {G : Type u_1} [AddGroup G] {x : G} {p : GProp} :
      (∃ gAddSubgroup.zmultiples x, p g) ∃ (m : ), p (m x)
      @[simp]
      theorem MonoidHom.map_zpowers {G : Type u_1} [Group G] {N : Type u_3} [Group N] (f : G →* N) (x : G) :
      @[simp]
      instance Subgroup.zpowers_isCommutative {G : Type u_1} [Group G] (g : G) :
      (Subgroup.zpowers g).IsCommutative
      instance AddSubgroup.zmultiples_isCommutative {G : Type u_1} [AddGroup G] (g : G) :
      (AddSubgroup.zmultiples g).IsCommutative
      @[simp]
      theorem Subgroup.zpowers_le {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :
      @[simp]
      theorem AddSubgroup.zmultiples_le {G : Type u_1} [AddGroup G] {g : G} {H : AddSubgroup G} :
      theorem Subgroup.zpowers_le_of_mem {G : Type u_1} [Group G] {g : G} {H : Subgroup G} :

      Alias of the reverse direction of Subgroup.zpowers_le.

      theorem AddSubgroup.zmultiples_le_of_mem {G : Type u_1} [AddGroup G] {g : G} {H : AddSubgroup G} :

      Alias of the reverse direction of AddSubgroup.zmultiples_le.

      @[simp]
      theorem Subgroup.zpowers_eq_bot {G : Type u_1} [Group G] {g : G} :
      @[simp]
      theorem Subgroup.zpowers_ne_bot {G : Type u_1} [Group G] {g : G} :