Documentation

Mathlib.Algebra.Group.Submonoid.Membership

Submonoids: membership criteria #

In this file we prove various facts about membership in a submonoid:

Tags #

submonoid, submonoids

theorem Submonoid.mem_iSup_of_directed {M : Type u_1} [MulOneClass M] {ι : Sort u_4} [hι : Nonempty ι] {S : ιSubmonoid M} (hS : Directed (fun (x1 x2 : Submonoid M) => x1 x2) S) {x : M} :
x ⨆ (i : ι), S i ∃ (i : ι), x S i
theorem AddSubmonoid.mem_iSup_of_directed {M : Type u_1} [AddZeroClass M] {ι : Sort u_4} [hι : Nonempty ι] {S : ιAddSubmonoid M} (hS : Directed (fun (x1 x2 : AddSubmonoid M) => x1 x2) S) {x : M} :
x ⨆ (i : ι), S i ∃ (i : ι), x S i
theorem Submonoid.coe_iSup_of_directed {M : Type u_1} [MulOneClass M] {ι : Sort u_4} [Nonempty ι] {S : ιSubmonoid M} (hS : Directed (fun (x1 x2 : Submonoid M) => x1 x2) S) :
(⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
theorem AddSubmonoid.coe_iSup_of_directed {M : Type u_1} [AddZeroClass M] {ι : Sort u_4} [Nonempty ι] {S : ιAddSubmonoid M} (hS : Directed (fun (x1 x2 : AddSubmonoid M) => x1 x2) S) :
(⨆ (i : ι), S i) = ⋃ (i : ι), (S i)
theorem Submonoid.mem_sSup_of_directedOn {M : Type u_1} [MulOneClass M] {S : Set (Submonoid M)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : Submonoid M) => x1 x2) S) {x : M} :
x sSup S sS, x s
theorem AddSubmonoid.mem_sSup_of_directedOn {M : Type u_1} [AddZeroClass M] {S : Set (AddSubmonoid M)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : AddSubmonoid M) => x1 x2) S) {x : M} :
x sSup S sS, x s
theorem Submonoid.coe_sSup_of_directedOn {M : Type u_1} [MulOneClass M] {S : Set (Submonoid M)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : Submonoid M) => x1 x2) S) :
(sSup S) = sS, s
theorem AddSubmonoid.coe_sSup_of_directedOn {M : Type u_1} [AddZeroClass M] {S : Set (AddSubmonoid M)} (Sne : S.Nonempty) (hS : DirectedOn (fun (x1 x2 : AddSubmonoid M) => x1 x2) S) :
(sSup S) = sS, s
theorem Submonoid.mem_sup_left {M : Type u_1} [MulOneClass M] {S T : Submonoid M} {x : M} :
x Sx S T
theorem AddSubmonoid.mem_sup_left {M : Type u_1} [AddZeroClass M] {S T : AddSubmonoid M} {x : M} :
x Sx S T
theorem Submonoid.mem_sup_right {M : Type u_1} [MulOneClass M] {S T : Submonoid M} {x : M} :
x Tx S T
theorem AddSubmonoid.mem_sup_right {M : Type u_1} [AddZeroClass M] {S T : AddSubmonoid M} {x : M} :
x Tx S T
theorem Submonoid.mul_mem_sup {M : Type u_1} [MulOneClass M] {S T : Submonoid M} {x y : M} (hx : x S) (hy : y T) :
x * y S T
theorem AddSubmonoid.add_mem_sup {M : Type u_1} [AddZeroClass M] {S T : AddSubmonoid M} {x y : M} (hx : x S) (hy : y T) :
x + y S T
theorem Submonoid.mem_iSup_of_mem {M : Type u_1} [MulOneClass M] {ι : Sort u_4} {S : ιSubmonoid M} (i : ι) {x : M} :
x S ix iSup S
theorem AddSubmonoid.mem_iSup_of_mem {M : Type u_1} [AddZeroClass M] {ι : Sort u_4} {S : ιAddSubmonoid M} (i : ι) {x : M} :
x S ix iSup S
theorem Submonoid.mem_sSup_of_mem {M : Type u_1} [MulOneClass M] {S : Set (Submonoid M)} {s : Submonoid M} (hs : s S) {x : M} :
x sx sSup S
theorem AddSubmonoid.mem_sSup_of_mem {M : Type u_1} [AddZeroClass M] {S : Set (AddSubmonoid M)} {s : AddSubmonoid M} (hs : s S) {x : M} :
x sx sSup S
theorem Submonoid.iSup_induction {M : Type u_1} [MulOneClass M] {ι : Sort u_4} (S : ιSubmonoid M) {C : MProp} {x : M} (hx : x ⨆ (i : ι), S i) (mem : ∀ (i : ι), xS i, C x) (one : C 1) (mul : ∀ (x y : M), C xC yC (x * y)) :
C x

An induction principle for elements of ⨆ i, S i. If C holds for 1 and all elements of S i for all i, and is preserved under multiplication, then it holds for all elements of the supremum of S.

theorem AddSubmonoid.iSup_induction {M : Type u_1} [AddZeroClass M] {ι : Sort u_4} (S : ιAddSubmonoid M) {C : MProp} {x : M} (hx : x ⨆ (i : ι), S i) (mem : ∀ (i : ι), xS i, C x) (one : C 0) (mul : ∀ (x y : M), C xC yC (x + y)) :
C x

An induction principle for elements of ⨆ i, S i. If C holds for 0 and all elements of S i for all i, and is preserved under addition, then it holds for all elements of the supremum of S.

theorem Submonoid.iSup_induction' {M : Type u_1} [MulOneClass M] {ι : Sort u_4} (S : ιSubmonoid M) {C : (x : M) → x ⨆ (i : ι), S iProp} (mem : ∀ (i : ι) (x : M) (hxS : x S i), C x ) (one : C 1 ) (mul : ∀ (x y : M) (hx : x ⨆ (i : ι), S i) (hy : y ⨆ (i : ι), S i), C x hxC y hyC (x * y) ) {x : M} (hx : x ⨆ (i : ι), S i) :
C x hx

A dependent version of Submonoid.iSup_induction.

theorem AddSubmonoid.iSup_induction' {M : Type u_1} [AddZeroClass M] {ι : Sort u_4} (S : ιAddSubmonoid M) {C : (x : M) → x ⨆ (i : ι), S iProp} (mem : ∀ (i : ι) (x : M) (hxS : x S i), C x ) (one : C 0 ) (mul : ∀ (x y : M) (hx : x ⨆ (i : ι), S i) (hy : y ⨆ (i : ι), S i), C x hxC y hyC (x + y) ) {x : M} (hx : x ⨆ (i : ι), S i) :
C x hx

A dependent version of AddSubmonoid.iSup_induction.

theorem Submonoid.mem_closure_singleton {M : Type u_1} [Monoid M] {x y : M} :
y Submonoid.closure {x} ∃ (n : ), x ^ n = y

The submonoid generated by an element of a monoid equals the set of natural number powers of the element.

theorem Submonoid.card_bot {M : Type u_1} [Monoid M] {x✝ : Fintype } :
theorem AddSubmonoid.card_bot {M : Type u_1} [AddMonoid M] {x✝ : Fintype } :
theorem Submonoid.eq_bot_of_card_le {M : Type u_1} [Monoid M] {S : Submonoid M} [Fintype S] (h : Fintype.card S 1) :
S =
theorem AddSubmonoid.eq_bot_of_card_le {M : Type u_1} [AddMonoid M] {S : AddSubmonoid M} [Fintype S] (h : Fintype.card S 1) :
S =
theorem Submonoid.eq_bot_of_card_eq {M : Type u_1} [Monoid M] {S : Submonoid M} [Fintype S] (h : Fintype.card S = 1) :
S =
theorem AddSubmonoid.eq_bot_of_card_eq {M : Type u_1} [AddMonoid M] {S : AddSubmonoid M} [Fintype S] (h : Fintype.card S = 1) :
S =
theorem Submonoid.eq_bot_iff_card {M : Type u_1} [Monoid M] {S : Submonoid M} [Fintype S] :
theorem FreeMonoid.mrange_lift {M : Type u_1} [Monoid M] {α : Type u_4} (f : αM) :
theorem FreeAddMonoid.mrange_lift {M : Type u_1} [AddMonoid M] {α : Type u_4} (f : αM) :
theorem Submonoid.closure_eq_image_prod {M : Type u_1} [Monoid M] (s : Set M) :
(Submonoid.closure s) = List.prod '' {l : List M | xl, x s}
theorem AddSubmonoid.closure_eq_image_sum {M : Type u_1} [AddMonoid M] (s : Set M) :
(AddSubmonoid.closure s) = List.sum '' {l : List M | xl, x s}
theorem Submonoid.exists_list_of_mem_closure {M : Type u_1} [Monoid M] {s : Set M} {x : M} (hx : x Submonoid.closure s) :
∃ (l : List M), (∀ yl, y s) l.prod = x
theorem AddSubmonoid.exists_list_of_mem_closure {M : Type u_1} [AddMonoid M] {s : Set M} {x : M} (hx : x AddSubmonoid.closure s) :
∃ (l : List M), (∀ yl, y s) l.sum = x
theorem Submonoid.exists_multiset_of_mem_closure {M : Type u_4} [CommMonoid M] {s : Set M} {x : M} (hx : x Submonoid.closure s) :
∃ (l : Multiset M), (∀ yl, y s) l.prod = x
theorem AddSubmonoid.exists_multiset_of_mem_closure {M : Type u_4} [AddCommMonoid M] {s : Set M} {x : M} (hx : x AddSubmonoid.closure s) :
∃ (l : Multiset M), (∀ yl, y s) l.sum = x
theorem Submonoid.closure_induction_left {M : Type u_1} [Monoid M] {s : Set M} {p : (m : M) → m Submonoid.closure sProp} (one : p 1 ) (mul_left : ∀ (x : M) (hx : x s) (y : M) (hy : y Submonoid.closure s), p y hyp (x * y) ) {x : M} (h : x Submonoid.closure s) :
p x h
theorem AddSubmonoid.closure_induction_left {M : Type u_1} [AddMonoid M] {s : Set M} {p : (m : M) → m AddSubmonoid.closure sProp} (one : p 0 ) (mul_left : ∀ (x : M) (hx : x s) (y : M) (hy : y AddSubmonoid.closure s), p y hyp (x + y) ) {x : M} (h : x AddSubmonoid.closure s) :
p x h
theorem Submonoid.induction_of_closure_eq_top_left {M : Type u_1} [Monoid M] {s : Set M} {p : MProp} (hs : Submonoid.closure s = ) (x : M) (one : p 1) (mul : xs, ∀ (y : M), p yp (x * y)) :
p x
theorem AddSubmonoid.induction_of_closure_eq_top_left {M : Type u_1} [AddMonoid M] {s : Set M} {p : MProp} (hs : AddSubmonoid.closure s = ) (x : M) (one : p 0) (mul : xs, ∀ (y : M), p yp (x + y)) :
p x
theorem Submonoid.closure_induction_right {M : Type u_1} [Monoid M] {s : Set M} {p : (m : M) → m Submonoid.closure sProp} (one : p 1 ) (mul_right : ∀ (x : M) (hx : x Submonoid.closure s) (y : M) (hy : y s), p x hxp (x * y) ) {x : M} (h : x Submonoid.closure s) :
p x h
theorem AddSubmonoid.closure_induction_right {M : Type u_1} [AddMonoid M] {s : Set M} {p : (m : M) → m AddSubmonoid.closure sProp} (one : p 0 ) (mul_right : ∀ (x : M) (hx : x AddSubmonoid.closure s) (y : M) (hy : y s), p x hxp (x + y) ) {x : M} (h : x AddSubmonoid.closure s) :
p x h
theorem Submonoid.induction_of_closure_eq_top_right {M : Type u_1} [Monoid M] {s : Set M} {p : MProp} (hs : Submonoid.closure s = ) (x : M) (H1 : p 1) (Hmul : ∀ (x y : M), y sp xp (x * y)) :
p x
theorem AddSubmonoid.induction_of_closure_eq_top_right {M : Type u_1} [AddMonoid M] {s : Set M} {p : MProp} (hs : AddSubmonoid.closure s = ) (x : M) (H1 : p 0) (Hmul : ∀ (x y : M), y sp xp (x + y)) :
p x
def Submonoid.powers {M : Type u_1} [Monoid M] (n : M) :

The submonoid generated by an element.

Equations
Instances For
    @[simp]
    theorem Submonoid.mem_powers {M : Type u_1} [Monoid M] (n : M) :
    theorem Submonoid.coe_powers {M : Type u_1} [Monoid M] (x : M) :
    (Submonoid.powers x) = Set.range fun (n : ) => x ^ n
    theorem Submonoid.mem_powers_iff {M : Type u_1} [Monoid M] (x z : M) :
    x Submonoid.powers z ∃ (n : ), z ^ n = x
    noncomputable instance Submonoid.decidableMemPowers {M : Type u_1} [Monoid M] {a : M} :
    Equations
    theorem Submonoid.powers_le {M : Type u_1} [Monoid M] {n : M} {P : Submonoid M} :
    @[simp]
    theorem IsIdempotentElem.coe_powers {M : Type u_1} [Monoid M] {a : M} (ha : IsIdempotentElem a) :
    (Submonoid.powers a) = {1, a}
    @[reducible, inline]
    abbrev Submonoid.groupPowers {M : Type u_1} [Monoid M] {x : M} {n : } (hpos : 0 < n) (hx : x ^ n = 1) :

    The submonoid generated by an element is a group if that element has finite order.

    Equations
    Instances For
      def Submonoid.pow {M : Type u_1} [Monoid M] (n : M) (m : ) :

      Exponentiation map from natural numbers to powers.

      Equations
      Instances For
        @[simp]
        theorem Submonoid.pow_coe {M : Type u_1} [Monoid M] (n : M) (m : ) :
        (Submonoid.pow n m) = n ^ m
        theorem Submonoid.pow_apply {M : Type u_1} [Monoid M] (n : M) (m : ) :
        Submonoid.pow n m = n ^ m,
        def Submonoid.log {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (p : (Submonoid.powers n)) :

        Logarithms from powers to natural numbers.

        Equations
        Instances For
          @[simp]
          theorem Submonoid.pow_log_eq_self {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (p : (Submonoid.powers n)) :
          @[simp]
          theorem Submonoid.log_pow_eq_self {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (h : Function.Injective fun (m : ) => n ^ m) (m : ) :
          def Submonoid.powLogEquiv {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (h : Function.Injective fun (m : ) => n ^ m) :

          The exponentiation map is an isomorphism from the additive monoid on natural numbers to powers when it is injective. The inverse is given by the logarithms.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem Submonoid.powLogEquiv_apply {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (h : Function.Injective fun (m : ) => n ^ m) (m : Multiplicative ) :
            (Submonoid.powLogEquiv h) m = Submonoid.pow n (Multiplicative.toAdd m)
            @[simp]
            theorem Submonoid.powLogEquiv_symm_apply {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (h : Function.Injective fun (m : ) => n ^ m) (m : (Submonoid.powers n)) :
            (Submonoid.powLogEquiv h).symm m = Multiplicative.ofAdd (Submonoid.log m)
            theorem Submonoid.log_mul {M : Type u_1} [Monoid M] [DecidableEq M] {n : M} (h : Function.Injective fun (m : ) => n ^ m) (x y : (Submonoid.powers n)) :
            theorem Submonoid.log_pow_int_eq_self {x : } (h : 1 < x.natAbs) (m : ) :
            @[simp]
            theorem Submonoid.map_powers {M : Type u_1} [Monoid M] {N : Type u_4} {F : Type u_5} [Monoid N] [FunLike F M N] [MonoidHomClass F M N] (f : F) (m : M) :
            theorem IsScalarTower.of_mclosure_eq_top {M : Type u_1} {N : Type u_4} {α : Type u_5} [Monoid M] [MulAction M N] [SMul N α] [MulAction M α] {s : Set M} (htop : Submonoid.closure s = ) (hs : xs, ∀ (y : N) (z : α), (x y) z = x y z) :
            theorem VAddAssocClass.of_mclosure_eq_top {M : Type u_1} {N : Type u_4} {α : Type u_5} [AddMonoid M] [AddAction M N] [VAdd N α] [AddAction M α] {s : Set M} (htop : AddSubmonoid.closure s = ) (hs : xs, ∀ (y : N) (z : α), (x +ᵥ y) +ᵥ z = x +ᵥ y +ᵥ z) :
            theorem SMulCommClass.of_mclosure_eq_top {M : Type u_1} {N : Type u_4} {α : Type u_5} [Monoid M] [SMul N α] [MulAction M α] {s : Set M} (htop : Submonoid.closure s = ) (hs : xs, ∀ (y : N) (z : α), x y z = y x z) :
            theorem VAddCommClass.of_mclosure_eq_top {M : Type u_1} {N : Type u_4} {α : Type u_5} [AddMonoid M] [VAdd N α] [AddAction M α] {s : Set M} (htop : AddSubmonoid.closure s = ) (hs : xs, ∀ (y : N) (z : α), x +ᵥ y +ᵥ z = y +ᵥ x +ᵥ z) :
            theorem Submonoid.sup_eq_range {N : Type u_4} [CommMonoid N] (s t : Submonoid N) :
            s t = MonoidHom.mrange (s.subtype.coprod t.subtype)
            theorem AddSubmonoid.sup_eq_range {N : Type u_4} [AddCommMonoid N] (s t : AddSubmonoid N) :
            s t = AddMonoidHom.mrange (s.subtype.coprod t.subtype)
            theorem Submonoid.mem_sup {N : Type u_4} [CommMonoid N] {s t : Submonoid N} {x : N} :
            x s t ys, zt, y * z = x
            theorem AddSubmonoid.mem_sup {N : Type u_4} [AddCommMonoid N] {s t : AddSubmonoid N} {x : N} :
            x s t ys, zt, y + z = x
            theorem AddSubmonoid.mem_closure_singleton {A : Type u_2} [AddMonoid A] {x y : A} :
            y AddSubmonoid.closure {x} ∃ (n : ), n x = y

            The AddSubmonoid generated by an element of an AddMonoid equals the set of natural number multiples of the element.

            def AddSubmonoid.multiples {A : Type u_2} [AddMonoid A] (x : A) :

            The additive submonoid generated by an element.

            Equations
            Instances For
              @[simp]
              theorem AddSubmonoid.coe_multiples {M : Type u_1} [AddMonoid M] (x : M) :
              (AddSubmonoid.multiples x) = Set.range fun (n : ) => n x
              theorem AddSubmonoid.mem_multiples_iff {M : Type u_1} [AddMonoid M] (x z : M) :
              x AddSubmonoid.multiples z ∃ (n : ), n z = x
              @[reducible, inline]
              abbrev AddSubmonoid.addGroupMultiples {M : Type u_1} [AddMonoid M] {x : M} {n : } (hpos : 0 < n) (hx : n x = 0) :

              The additive submonoid generated by an element is an additive group if that element has finite order.

              Equations
              Instances For

                Lemmas about additive closures of Subsemigroup.

                theorem MulMemClass.mul_right_mem_add_closure {M : Type u_1} {R : Type u_4} [NonUnitalNonAssocSemiring R] [SetLike M R] [MulMemClass M R] {S : M} {a b : R} (ha : a AddSubmonoid.closure S) (hb : b S) :

                The product of an element of the additive closure of a multiplicative subsemigroup M and an element of M is contained in the additive closure of M.

                theorem MulMemClass.mul_mem_add_closure {M : Type u_1} {R : Type u_4} [NonUnitalNonAssocSemiring R] [SetLike M R] [MulMemClass M R] {S : M} {a b : R} (ha : a AddSubmonoid.closure S) (hb : b AddSubmonoid.closure S) :

                The product of two elements of the additive closure of a submonoid M is an element of the additive closure of M.

                theorem MulMemClass.mul_left_mem_add_closure {M : Type u_1} {R : Type u_4} [NonUnitalNonAssocSemiring R] [SetLike M R] [MulMemClass M R] {S : M} {a b : R} (ha : a S) (hb : b AddSubmonoid.closure S) :

                The product of an element of S and an element of the additive closure of a multiplicative submonoid S is contained in the additive closure of S.

                theorem Submonoid.mem_closure_pair {A : Type u_4} [CommMonoid A] (a b c : A) :
                c Submonoid.closure {a, b} ∃ (m : ) (n : ), a ^ m * b ^ n = c

                An element is in the closure of a two-element set if it is a linear combination of those two elements.

                theorem AddSubmonoid.mem_closure_pair {A : Type u_4} [AddCommMonoid A] (a b c : A) :
                c AddSubmonoid.closure {a, b} ∃ (m : ) (n : ), m a + n b = c

                An element is in the closure of a two-element set if it is a linear combination of those two elements.

                theorem ofMul_image_powers_eq_multiples_ofMul {M : Type u_1} [Monoid M] {x : M} :
                Additive.ofMul '' (Submonoid.powers x) = (AddSubmonoid.multiples (Additive.ofMul x))
                theorem ofAdd_image_multiples_eq_powers_ofAdd {A : Type u_2} [AddMonoid A] {x : A} :
                Multiplicative.ofAdd '' (AddSubmonoid.multiples x) = (Submonoid.powers (Multiplicative.ofAdd x))

                The submonoid of primal elements in a cancellative commutative monoid with zero.

                Equations
                Instances For