Idempotent elements of a group with zero #
instance
IsIdempotentElem.instZeroSubtype
{M₀ : Type u_4}
[MulZeroClass M₀]
:
Zero { p : M₀ // IsIdempotentElem p }
Equations
- IsIdempotentElem.instZeroSubtype = { zero := ⟨0, ⋯⟩ }
@[simp]
theorem
IsIdempotentElem.iff_eq_zero_or_one
{G₀ : Type u_8}
[CancelMonoidWithZero G₀]
{p : G₀}
:
IsIdempotentElem p ↔ p = 0 ∨ p = 1