Products of monoids with zero, groups with zero #
In this file we define MonoidWithZero
, GroupWithZero
, etc... instances for M₀ × N₀
.
Main declarations #
mulMonoidWithZeroHom
: Multiplication bundled as a monoid with zero homomorphism.divMonoidWithZeroHom
: Division bundled as a monoid with zero homomorphism.
instance
Prod.instMulZeroClass
{M₀ : Type u_1}
{N₀ : Type u_2}
[MulZeroClass M₀]
[MulZeroClass N₀]
:
MulZeroClass (M₀ × N₀)
Equations
instance
Prod.instSemigroupWithZero
{M₀ : Type u_1}
{N₀ : Type u_2}
[SemigroupWithZero M₀]
[SemigroupWithZero N₀]
:
SemigroupWithZero (M₀ × N₀)
Equations
instance
Prod.instMulZeroOneClass
{M₀ : Type u_1}
{N₀ : Type u_2}
[MulZeroOneClass M₀]
[MulZeroOneClass N₀]
:
MulZeroOneClass (M₀ × N₀)
Equations
instance
Prod.instMonoidWithZero
{M₀ : Type u_1}
{N₀ : Type u_2}
[MonoidWithZero M₀]
[MonoidWithZero N₀]
:
MonoidWithZero (M₀ × N₀)
Equations
instance
Prod.instCommMonoidWithZero
{M₀ : Type u_1}
{N₀ : Type u_2}
[CommMonoidWithZero M₀]
[CommMonoidWithZero N₀]
:
CommMonoidWithZero (M₀ × N₀)
Equations
Multiplication and division as homomorphisms #
Multiplication as a multiplicative homomorphism with zero.
Equations
- mulMonoidWithZeroHom = { toFun := (↑mulMonoidHom).toFun, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
mulMonoidWithZeroHom_apply
{M₀ : Type u_1}
[CommMonoidWithZero M₀]
(a✝ : M₀ × M₀)
:
mulMonoidWithZeroHom a✝ = (↑mulMonoidHom).toFun a✝
Division as a multiplicative homomorphism with zero.
Equations
- divMonoidWithZeroHom = { toFun := (↑divMonoidHom).toFun, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
divMonoidWithZeroHom_apply
{M₀ : Type u_1}
[CommGroupWithZero M₀]
(a✝ : M₀ × M₀)
:
divMonoidWithZeroHom a✝ = (↑divMonoidHom).toFun a✝