Multiplication by a nonzero element in a GroupWithZero
is a permutation. #
In a GroupWithZero
G₀
, the unit group G₀ˣ
is equivalent to the subtype of nonzero
elements.
Equations
- unitsEquivNeZero = { toFun := fun (a : G₀ˣ) => ⟨↑a, ⋯⟩, invFun := fun (a : { a : G₀ // a ≠ 0 }) => Units.mk0 ↑a ⋯, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
unitsEquivNeZero_symm_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : { a : G₀ // a ≠ 0 })
:
unitsEquivNeZero.symm a = Units.mk0 ↑a ⋯
@[simp]
theorem
unitsEquivNeZero_apply_coe
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀ˣ)
:
↑(unitsEquivNeZero a) = ↑a
Left multiplication by a nonzero element in a GroupWithZero
is a permutation of the
underlying type.
Equations
- Equiv.mulLeft₀ a ha = (Units.mk0 a ha).mulLeft
Instances For
@[simp]
theorem
Equiv.mulLeft₀_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
⇑(Equiv.mulLeft₀ a ha) = fun (x : G₀) => a * x
@[simp]
theorem
Equiv.mulLeft₀_symm_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
⇑(Equiv.symm (Equiv.mulLeft₀ a ha)) = fun (x : G₀) => a⁻¹ * x
theorem
mulLeft_bijective₀
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
Function.Bijective fun (x : G₀) => a * x
Right multiplication by a nonzero element in a GroupWithZero
is a permutation of the
underlying type.
Equations
- Equiv.mulRight₀ a ha = (Units.mk0 a ha).mulRight
Instances For
@[simp]
theorem
Equiv.mulRight₀_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
⇑(Equiv.mulRight₀ a ha) = fun (x : G₀) => x * a
@[simp]
theorem
Equiv.mulRight₀_symm_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
⇑(Equiv.symm (Equiv.mulRight₀ a ha)) = fun (x : G₀) => x * a⁻¹
theorem
mulRight_bijective₀
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
:
Function.Bijective fun (x : G₀) => x * a
Right division by a nonzero element in a GroupWithZero
is a permutation of the
underlying type.
Equations
- Equiv.divRight₀ a ha = { toFun := fun (x : G₀) => x / a, invFun := fun (x : G₀) => x * a, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Equiv.divRight₀_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
(x✝ : G₀)
:
(Equiv.divRight₀ a ha) x✝ = x✝ / a
@[simp]
theorem
Equiv.divRight₀_symm_apply
{G₀ : Type u_1}
[GroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
(x✝ : G₀)
:
(Equiv.symm (Equiv.divRight₀ a ha)) x✝ = x✝ * a
Left division by a nonzero element in a CommGroupWithZero
is a permutation of the underlying
type.
Equations
- Equiv.divLeft₀ a ha = { toFun := fun (x : G₀) => a / x, invFun := fun (x : G₀) => a / x, left_inv := ⋯, right_inv := ⋯ }
Instances For
@[simp]
theorem
Equiv.divLeft₀_apply
{G₀ : Type u_1}
[CommGroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
(x✝ : G₀)
:
(Equiv.divLeft₀ a ha) x✝ = a / x✝
@[simp]
theorem
Equiv.divLeft₀_symm_apply
{G₀ : Type u_1}
[CommGroupWithZero G₀]
(a : G₀)
(ha : a ≠ 0)
(x✝ : G₀)
:
(Equiv.symm (Equiv.divLeft₀ a ha)) x✝ = a / x✝