Documentation
Mathlib
.
Algebra
.
NeZero
Search
return to top
source
Imports
Init
Mathlib.Logic.Basic
Mathlib.Data.One.Defs
Mathlib.Order.Defs.PartialOrder
Imported by
not_neZero
eq_zero_or_neZero
zero_ne_one
one_ne_zero
ne_zero_of_eq_one
two_ne_zero
three_ne_zero
four_ne_zero
zero_ne_one'
one_ne_zero'
two_ne_zero'
three_ne_zero'
four_ne_zero'
NeZero
.
of_pos
NeZero
typeclass
#
We give basic facts about the
NeZero
n
typeclass.
source
theorem
not_neZero
{R :
Type
u_1}
[
Zero
R
]
{n :
R
}
:
¬
NeZero
n
↔
n
=
0
source
theorem
eq_zero_or_neZero
{R :
Type
u_1}
[
Zero
R
]
(a :
R
)
:
a
=
0
∨
NeZero
a
source
@[simp]
theorem
zero_ne_one
{α :
Type
u_2}
[
Zero
α
]
[
One
α
]
[
NeZero
1
]
:
0
≠
1
source
@[simp]
theorem
one_ne_zero
{α :
Type
u_2}
[
Zero
α
]
[
One
α
]
[
NeZero
1
]
:
1
≠
0
source
theorem
ne_zero_of_eq_one
{α :
Type
u_2}
[
Zero
α
]
[
One
α
]
[
NeZero
1
]
{a :
α
}
(h :
a
=
1
)
:
a
≠
0
source
theorem
two_ne_zero
{α :
Type
u_2}
[
Zero
α
]
[
OfNat
α
2
]
[
NeZero
2
]
:
2
≠
0
source
theorem
three_ne_zero
{α :
Type
u_2}
[
Zero
α
]
[
OfNat
α
3
]
[
NeZero
3
]
:
3
≠
0
source
theorem
four_ne_zero
{α :
Type
u_2}
[
Zero
α
]
[
OfNat
α
4
]
[
NeZero
4
]
:
4
≠
0
source
theorem
zero_ne_one'
(α :
Type
u_2)
[
Zero
α
]
[
One
α
]
[
NeZero
1
]
:
0
≠
1
source
theorem
one_ne_zero'
(α :
Type
u_2)
[
Zero
α
]
[
One
α
]
[
NeZero
1
]
:
1
≠
0
source
theorem
two_ne_zero'
(α :
Type
u_2)
[
Zero
α
]
[
OfNat
α
2
]
[
NeZero
2
]
:
2
≠
0
source
theorem
three_ne_zero'
(α :
Type
u_2)
[
Zero
α
]
[
OfNat
α
3
]
[
NeZero
3
]
:
3
≠
0
source
theorem
four_ne_zero'
(α :
Type
u_2)
[
Zero
α
]
[
OfNat
α
4
]
[
NeZero
4
]
:
4
≠
0
source
theorem
NeZero
.
of_pos
{M :
Type
u_2}
{x :
M
}
[
Preorder
M
]
[
Zero
M
]
(h :
0
<
x
)
:
NeZero
x