Canonically ordered semifields #
@[deprecated "Use `[LinearOrderedSemifield α] [CanonicallyOrderedAdd α]` instead." (since := "2025-01-13")]
structure
CanonicallyLinearOrderedSemifield
(α : Type u_1)
extends CanonicallyOrderedCommSemiring α, LinearOrderedSemifield α :
Type u_1
A canonically linear ordered field is a linear ordered field in which a ≤ b
iff there exists
c
with b = a + c
.
- add : α → α → α
- zero : α
- bot : α
- mul : α → α → α
- one : α
- natCast_zero : NatCast.natCast 0 = 0
- exists_pair_ne : ∃ (x : α), ∃ (y : α), x ≠ y
- zero_le_one : 0 ≤ 1
- min : α → α → α
- max : α → α → α
- decidableLE : DecidableRel fun (x1 x2 : α) => x1 ≤ x2
- decidableLT : DecidableRel fun (x1 x2 : α) => x1 < x2
- inv : α → α
- div : α → α → α
Instances For
@[reducible, inline]
abbrev
LinearOrderedSemifield.toLinearOrderedCommGroupWithZero
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
:
Construct a LinearOrderedCommGroupWithZero
from a canonically ordered
LinearOrderedSemifield
.
Equations
Instances For
theorem
tsub_div
{α : Type u_1}
[LinearOrderedSemifield α]
[CanonicallyOrderedAdd α]
[Sub α]
[OrderedSub α]
(a b c : α)
: