Finset.sup
in a group #
@[simp]
theorem
Finset.fold_max_add
{ι : Type u_1}
{M : Type u_3}
[LinearOrder M]
[Add M]
[AddRightMono M]
(s : Finset ι)
(a : WithBot M)
(f : ι → M)
:
Finset.fold max ⊥ (fun (i : ι) => ↑(f i) + a) s = Finset.fold max ⊥ (WithBot.some ∘ f) s + a
theorem
Finset.inf'_pow
{ι : Type u_1}
{M : Type u_3}
[LinearOrder M]
[Monoid M]
[MulLeftMono M]
[MulRightMono M]
(s : Finset ι)
(f : ι → M)
(n : ℕ)
(hs : s.Nonempty)
:
theorem
Finset.nsmul_inf'
{ι : Type u_1}
{M : Type u_3}
[LinearOrder M]
[AddMonoid M]
[AddLeftMono M]
[AddRightMono M]
(s : Finset ι)
(f : ι → M)
(n : ℕ)
(hs : s.Nonempty)
:
theorem
Finset.sup'_pow
{ι : Type u_1}
{M : Type u_3}
[LinearOrder M]
[Monoid M]
[MulLeftMono M]
[MulRightMono M]
(s : Finset ι)
(f : ι → M)
(n : ℕ)
(hs : s.Nonempty)
:
theorem
Finset.nsmul_sup'
{ι : Type u_1}
{M : Type u_3}
[LinearOrder M]
[AddMonoid M]
[AddLeftMono M]
[AddRightMono M]
(s : Finset ι)
(f : ι → M)
(n : ℕ)
(hs : s.Nonempty)
:
theorem
Finset.sup'_mul
{ι : Type u_1}
{G : Type u_4}
[Group G]
[LinearOrder G]
[MulRightMono G]
(s : Finset ι)
(f : ι → G)
(a : G)
(hs : s.Nonempty)
:
theorem
Finset.sup'_add
{ι : Type u_1}
{G : Type u_4}
[AddGroup G]
[LinearOrder G]
[AddRightMono G]
(s : Finset ι)
(f : ι → G)
(a : G)
(hs : s.Nonempty)
:
Also see Finset.sup'_add'
that works for canonically ordered monoids.
theorem
Finset.mul_sup'
{ι : Type u_1}
{G : Type u_4}
[Group G]
[LinearOrder G]
[MulLeftMono G]
(s : Finset ι)
(f : ι → G)
(a : G)
(hs : s.Nonempty)
:
theorem
Finset.add_sup'
{ι : Type u_1}
{G : Type u_4}
[AddGroup G]
[LinearOrder G]
[AddLeftMono G]
(s : Finset ι)
(f : ι → G)
(a : G)
(hs : s.Nonempty)
:
Also see Finset.add_sup''
that works for canonically ordered monoids.
theorem
Finset.sup'_add'
{ι : Type u_1}
{M : Type u_3}
[LinearOrderedAddCommMonoid M]
[CanonicallyOrderedAdd M]
[Sub M]
[AddLeftReflectLE M]
[OrderedSub M]
(s : Finset ι)
(f : ι → M)
(a : M)
(hs : s.Nonempty)
:
Also see Finset.sup'_add
that works for ordered groups.
theorem
Finset.add_sup''
{ι : Type u_1}
{M : Type u_3}
[LinearOrderedAddCommMonoid M]
[CanonicallyOrderedAdd M]
[Sub M]
[AddLeftReflectLE M]
[OrderedSub M]
{s : Finset ι}
(hs : s.Nonempty)
(f : ι → M)
(a : M)
:
Also see Finset.add_sup'
that works for ordered groups.
theorem
Finset.sup_add
{ι : Type u_1}
{M : Type u_3}
[LinearOrderedAddCommMonoid M]
[CanonicallyOrderedAdd M]
[Sub M]
[AddLeftReflectLE M]
[OrderedSub M]
{s : Finset ι}
(hs : s.Nonempty)
(f : ι → M)
(a : M)
:
theorem
Finset.add_sup
{ι : Type u_1}
{M : Type u_3}
[LinearOrderedAddCommMonoid M]
[CanonicallyOrderedAdd M]
[Sub M]
[AddLeftReflectLE M]
[OrderedSub M]
{s : Finset ι}
(hs : s.Nonempty)
(f : ι → M)
(a : M)
:
theorem
Finset.sup_add_sup
{ι : Type u_1}
{κ : Type u_2}
{M : Type u_3}
[LinearOrderedAddCommMonoid M]
[CanonicallyOrderedAdd M]
[Sub M]
[AddLeftReflectLE M]
[OrderedSub M]
{s : Finset ι}
{t : Finset κ}
(hs : s.Nonempty)
(ht : t.Nonempty)
(f : ι → M)
(g : κ → M)
: