Documentation

Mathlib.Algebra.Order.Group.Pointwise.Bounds

Upper/lower bounds in ordered monoids and groups #

In this file we prove a few facts like “-s is bounded above iff s is bounded below” (bddAbove_neg).

theorem mul_mem_upperBounds_mul {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {s t : Set M} {a b : M} (ha : a upperBounds s) (hb : b upperBounds t) :
a * b upperBounds (s * t)
theorem add_mem_upperBounds_add {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {s t : Set M} {a b : M} (ha : a upperBounds s) (hb : b upperBounds t) :
a + b upperBounds (s + t)
theorem mul_mem_lowerBounds_mul {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {s t : Set M} {a b : M} (ha : a lowerBounds s) (hb : b lowerBounds t) :
a * b lowerBounds (s * t)
theorem add_mem_lowerBounds_add {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {s t : Set M} {a b : M} (ha : a lowerBounds s) (hb : b lowerBounds t) :
a + b lowerBounds (s + t)
theorem BddAbove.mul {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) :
BddAbove (s * t)
theorem BddAbove.add {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) :
BddAbove (s + t)
theorem BddBelow.mul {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {s t : Set M} (hs : BddBelow s) (ht : BddBelow t) :
BddBelow (s * t)
theorem BddBelow.add {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {s t : Set M} (hs : BddBelow s) (ht : BddBelow t) :
BddBelow (s + t)
@[deprecated BddAbove.mul (since := "2024-11-13")]
theorem Set.BddAbove.mul {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) :
BddAbove (s * t)

Alias of BddAbove.mul.

@[deprecated BddAbove.add (since := "2024-11-13")]
theorem Set.BddAbove.add {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {s t : Set M} (hs : BddAbove s) (ht : BddAbove t) :
BddAbove (s + t)
theorem BddAbove.range_mul {ι : Type u_1} {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {f g : ιM} (hf : BddAbove (Set.range f)) (hg : BddAbove (Set.range g)) :
BddAbove (Set.range fun (i : ι) => f i * g i)
theorem BddAbove.range_add {ι : Type u_1} {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {f g : ιM} (hf : BddAbove (Set.range f)) (hg : BddAbove (Set.range g)) :
BddAbove (Set.range fun (i : ι) => f i + g i)
theorem BddBelow.range_mul {ι : Type u_1} {M : Type u_3} [Mul M] [Preorder M] [MulLeftMono M] [MulRightMono M] {f g : ιM} (hf : BddBelow (Set.range f)) (hg : BddBelow (Set.range g)) :
BddBelow (Set.range fun (i : ι) => f i * g i)
theorem BddBelow.range_add {ι : Type u_1} {M : Type u_3} [Add M] [Preorder M] [AddLeftMono M] [AddRightMono M] {f g : ιM} (hf : BddBelow (Set.range f)) (hg : BddBelow (Set.range g)) :
BddBelow (Set.range fun (i : ι) => f i + g i)
@[simp]
theorem bddAbove_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} :
@[simp]
theorem bddAbove_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} :
@[simp]
theorem bddBelow_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} :
@[simp]
theorem bddBelow_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} :
theorem BddAbove.inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} (h : BddAbove s) :
theorem BddAbove.neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} (h : BddAbove s) :
theorem BddBelow.inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} (h : BddBelow s) :
theorem BddBelow.neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} (h : BddBelow s) :
@[simp]
theorem isLUB_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} :
@[simp]
theorem isLUB_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} :
IsLUB (-s) a IsGLB s (-a)
theorem isLUB_inv' {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} :
theorem isLUB_neg' {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} :
IsLUB (-s) (-a) IsGLB s a
theorem IsGLB.inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} (h : IsGLB s a) :
theorem IsGLB.neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} (h : IsGLB s a) :
IsLUB (-s) (-a)
@[simp]
theorem isGLB_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} :
@[simp]
theorem isGLB_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} :
IsGLB (-s) a IsLUB s (-a)
theorem isGLB_inv' {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} :
theorem isGLB_neg' {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} :
IsGLB (-s) (-a) IsLUB s a
theorem IsLUB.inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {s : Set G} {a : G} (h : IsLUB s a) :
theorem IsLUB.neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {s : Set G} {a : G} (h : IsLUB s a) :
IsGLB (-s) (-a)
theorem BddBelow.range_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {α : Type u_4} {f : αG} (hf : BddBelow (Set.range f)) :
BddAbove (Set.range fun (x : α) => (f x)⁻¹)
theorem BddBelow.range_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {α : Type u_4} {f : αG} (hf : BddBelow (Set.range f)) :
BddAbove (Set.range fun (x : α) => -f x)
theorem BddAbove.range_inv {G : Type u_2} [Group G] [Preorder G] [MulLeftMono G] [MulRightMono G] {α : Type u_4} {f : αG} (hf : BddAbove (Set.range f)) :
BddBelow (Set.range fun (x : α) => (f x)⁻¹)
theorem BddAbove.range_neg {G : Type u_2} [AddGroup G] [Preorder G] [AddLeftMono G] [AddRightMono G] {α : Type u_4} {f : αG} (hf : BddAbove (Set.range f)) :
BddBelow (Set.range fun (x : α) => -f x)