Documentation

Mathlib.Algebra.Order.Monoid.Units

Units in ordered monoids #

@[simp]
theorem Units.val_le_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a b a b
@[simp]
theorem AddUnits.val_le_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a b a b
@[simp]
theorem Units.val_lt_val {α : Type u_1} [Monoid α] [Preorder α] {a b : αˣ} :
a < b a < b
@[simp]
theorem AddUnits.val_lt_val {α : Type u_1} [AddMonoid α] [Preorder α] {a b : AddUnits α} :
a < b a < b
def Units.orderEmbeddingVal {α : Type u_1} [Monoid α] [LinearOrder α] :
αˣ ↪o α

val : αˣ → α as an order embedding.

Equations
Instances For

    val : add_units α → α as an order embedding.

    Equations
    Instances For
      @[simp]
      theorem Units.max_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
      (a b) = a b
      @[simp]
      theorem AddUnits.max_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
      (a b) = a b
      @[simp]
      theorem Units.min_val {α : Type u_1} [Monoid α] [LinearOrder α] {a b : αˣ} :
      (a b) = a b
      @[simp]
      theorem AddUnits.min_val {α : Type u_1} [AddMonoid α] [LinearOrder α] {a b : AddUnits α} :
      (a b) = a b