Documentation

Mathlib.Algebra.Order.Nonneg.Lattice

Lattice structures on the type of nonnegative elements #

instance Nonneg.orderBot {α : Type u_1} [Preorder α] {a : α} :
OrderBot { x : α // a x }

This instance uses data fields from Subtype.partialOrder to help type-class inference. The Set.Ici data fields are definitionally equal, but that requires unfolding semireducible definitions, so type-class inference won't see this.

Equations
theorem Nonneg.bot_eq {α : Type u_1} [Preorder α] {a : α} :
= a,
instance Nonneg.noMaxOrder {α : Type u_1} [PartialOrder α] [NoMaxOrder α] {a : α} :
NoMaxOrder { x : α // a x }
instance Nonneg.instDenselyOrdered {α : Type u_1} [Preorder α] [DenselyOrdered α] {a : α} :
DenselyOrdered { x : α // a x }
@[reducible, inline]

If sSup ∅ ≤ a then {x : α // a ≤ x} is a ConditionallyCompleteLinearOrder.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[reducible, inline]

    If sSup ∅ ≤ a then {x : α // a ≤ x} is a ConditionallyCompleteLinearOrderBot.

    This instance uses data fields from Subtype.linearOrder to help type-class inference. The Set.Ici data fields are definitionally equal, but that requires unfolding semireducible definitions, so type-class inference won't see this.

    Equations
    Instances For