Lattice structures on the type of nonnegative elements #
This instance uses data fields from Subtype.partialOrder
to help type-class inference.
The Set.Ici
data fields are definitionally equal, but that requires unfolding semireducible
definitions, so type-class inference won't see this.
Equations
instance
Nonneg.noMaxOrder
{α : Type u_1}
[PartialOrder α]
[NoMaxOrder α]
{a : α}
:
NoMaxOrder { x : α // a ≤ x }
instance
Nonneg.semilatticeSup
{α : Type u_1}
[SemilatticeSup α]
{a : α}
:
SemilatticeSup { x : α // a ≤ x }
Equations
instance
Nonneg.semilatticeInf
{α : Type u_1}
[SemilatticeInf α]
{a : α}
:
SemilatticeInf { x : α // a ≤ x }
Equations
instance
Nonneg.distribLattice
{α : Type u_1}
[DistribLattice α]
{a : α}
:
DistribLattice { x : α // a ≤ x }
Equations
instance
Nonneg.instDenselyOrdered
{α : Type u_1}
[Preorder α]
[DenselyOrdered α]
{a : α}
:
DenselyOrdered { x : α // a ≤ x }
@[reducible, inline]
noncomputable abbrev
Nonneg.conditionallyCompleteLinearOrder
{α : Type u_1}
[ConditionallyCompleteLinearOrder α]
{a : α}
:
ConditionallyCompleteLinearOrder { x : α // a ≤ x }
If sSup ∅ ≤ a
then {x : α // a ≤ x}
is a ConditionallyCompleteLinearOrder
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[reducible, inline]
noncomputable abbrev
Nonneg.conditionallyCompleteLinearOrderBot
{α : Type u_1}
[ConditionallyCompleteLinearOrder α]
(a : α)
:
ConditionallyCompleteLinearOrderBot { x : α // a ≤ x }
If sSup ∅ ≤ a
then {x : α // a ≤ x}
is a ConditionallyCompleteLinearOrderBot
.
This instance uses data fields from Subtype.linearOrder
to help type-class inference.
The Set.Ici
data fields are definitionally equal, but that requires unfolding semireducible
definitions, so type-class inference won't see this.