Degree of univariate monomials #
theorem
Polynomial.natDegree_le_pred
{R : Type u}
{n : ℕ}
[Semiring R]
{p : Polynomial R}
(hf : p.natDegree ≤ n)
(hn : p.coeff n = 0)
:
theorem
Polynomial.monomial_natDegree_leadingCoeff_eq_self
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.support.card ≤ 1)
:
(Polynomial.monomial p.natDegree) p.leadingCoeff = p
theorem
Polynomial.C_mul_X_pow_eq_self
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p.support.card ≤ 1)
:
Polynomial.C p.leadingCoeff * Polynomial.X ^ p.natDegree = p