Degree and support of univariate polynomials #
Main results #
Polynomial.as_sum_support
: writep : R[X]
as a sum over its supportPolynomial.as_sum_range
: writep : R[X]
as a sum over{0, ..., natDegree p}
Polynomial.natDegree_mem_support_of_nonzero
:natDegree p ∈ support p
ifp ≠ 0
theorem
Polynomial.supDegree_eq_natDegree
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
AddMonoidAlgebra.supDegree id p.toFinsupp = p.natDegree
theorem
Polynomial.supp_subset_range
{R : Type u}
{m : ℕ}
[Semiring R]
{p : Polynomial R}
(h : p.natDegree < m)
:
p.support ⊆ Finset.range m
theorem
Polynomial.supp_subset_range_natDegree_succ
{R : Type u}
[Semiring R]
{p : Polynomial R}
:
p.support ⊆ Finset.range (p.natDegree + 1)
theorem
Polynomial.as_sum_support
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
p = ∑ i ∈ p.support, (Polynomial.monomial i) (p.coeff i)
theorem
Polynomial.as_sum_support_C_mul_X_pow
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
p = ∑ i ∈ p.support, Polynomial.C (p.coeff i) * Polynomial.X ^ i
theorem
Polynomial.sum_over_range'
{R : Type u}
{S : Type v}
[Semiring R]
[AddCommMonoid S]
(p : Polynomial R)
{f : ℕ → R → S}
(h : ∀ (n : ℕ), f n 0 = 0)
(n : ℕ)
(w : p.natDegree < n)
:
p.sum f = ∑ a ∈ Finset.range n, f a (p.coeff a)
We can reexpress a sum over p.support
as a sum over range n
,
for any n
satisfying p.natDegree < n
.
theorem
Polynomial.sum_over_range
{R : Type u}
{S : Type v}
[Semiring R]
[AddCommMonoid S]
(p : Polynomial R)
{f : ℕ → R → S}
(h : ∀ (n : ℕ), f n 0 = 0)
:
p.sum f = ∑ a ∈ Finset.range (p.natDegree + 1), f a (p.coeff a)
We can reexpress a sum over p.support
as a sum over range (p.natDegree + 1)
.
theorem
Polynomial.sum_fin
{R : Type u}
{S : Type v}
[Semiring R]
[AddCommMonoid S]
(f : ℕ → R → S)
(hf : ∀ (i : ℕ), f i 0 = 0)
{n : ℕ}
{p : Polynomial R}
(hn : p.degree < ↑n)
:
theorem
Polynomial.as_sum_range'
{R : Type u}
[Semiring R]
(p : Polynomial R)
(n : ℕ)
(w : p.natDegree < n)
:
p = ∑ i ∈ Finset.range n, (Polynomial.monomial i) (p.coeff i)
theorem
Polynomial.as_sum_range
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
p = ∑ i ∈ Finset.range (p.natDegree + 1), (Polynomial.monomial i) (p.coeff i)
theorem
Polynomial.as_sum_range_C_mul_X_pow
{R : Type u}
[Semiring R]
(p : Polynomial R)
:
p = ∑ i ∈ Finset.range (p.natDegree + 1), Polynomial.C (p.coeff i) * Polynomial.X ^ i
theorem
Polynomial.mem_support_C_mul_X_pow
{R : Type u}
[Semiring R]
{n a : ℕ}
{c : R}
(h : a ∈ (Polynomial.C c * Polynomial.X ^ n).support)
:
a = n
theorem
Polynomial.card_support_C_mul_X_pow_le_one
{R : Type u}
[Semiring R]
{c : R}
{n : ℕ}
:
(Polynomial.C c * Polynomial.X ^ n).support.card ≤ 1
theorem
Polynomial.natDegree_mem_support_of_nonzero
{R : Type u}
[Semiring R]
{p : Polynomial R}
(H : p ≠ 0)
:
p.natDegree ∈ p.support
theorem
Polynomial.natDegree_eq_support_max'
{R : Type u}
[Semiring R]
{p : Polynomial R}
(h : p ≠ 0)
:
p.natDegree = p.support.max' ⋯