Documentation

Mathlib.Algebra.Ring.Hom.Defs

Homomorphisms of semirings and rings #

This file defines bundled homomorphisms of (non-unital) semirings and rings. As with monoid and groups, we use the same structure RingHom a β, a.k.a. α →+* β, for both types of homomorphisms.

Main definitions #

Notations #

Implementation notes #

Tags #

RingHom, SemiringHom

structure NonUnitalRingHom (α : Type u_5) (β : Type u_6) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] extends α →ₙ* β, α →+ β :
Type (max u_5 u_6)

Bundled non-unital semiring homomorphisms α →ₙ+* β; use this for bundled non-unital ring homomorphisms too.

When possible, instead of parametrizing results over (f : α →ₙ+* β), you should parametrize over (F : Type*) [NonUnitalRingHomClass F α β] (f : F).

When you extend this structure, make sure to extend NonUnitalRingHomClass.

  • toFun : αβ
  • map_mul' (x y : α) : self.toFun (x * y) = self.toFun x * self.toFun y
  • map_zero' : self.toFun 0 = 0
  • map_add' (x y : α) : self.toFun (x + y) = self.toFun x + self.toFun y
Instances For

    α →ₙ+* β denotes the type of non-unital ring homomorphisms from α to β.

    Equations
    Instances For
      class NonUnitalRingHomClass (F : Type u_5) (α : outParam (Type u_6)) (β : outParam (Type u_7)) [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [FunLike F α β] extends MulHomClass F α β, AddMonoidHomClass F α β :

      NonUnitalRingHomClass F α β states that F is a type of non-unital (semi)ring homomorphisms. You should extend this class when you extend NonUnitalRingHom.

      Instances

        Turn an element of a type F satisfying NonUnitalRingHomClass F α β into an actual NonUnitalRingHom. This is declared as the default coercion from F to α →ₙ+* β.

        Equations
        • f = { toMulHom := f, map_zero' := , map_add' := }
        Instances For
          Equations
          @[simp]
          theorem NonUnitalRingHom.coe_toMulHom {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) :
          f.toMulHom = f
          @[simp]
          theorem NonUnitalRingHom.coe_mulHom_mk {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : αβ) (h₁ : ∀ (x y : α), f (x * y) = f x * f y) (h₂ : { toFun := f, map_mul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : α), { toFun := f, map_mul' := h₁ }.toFun (x + y) = { toFun := f, map_mul' := h₁ }.toFun x + { toFun := f, map_mul' := h₁ }.toFun y) :
          { toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃ } = { toFun := f, map_mul' := h₁ }
          theorem NonUnitalRingHom.coe_toAddMonoidHom {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) :
          f.toAddMonoidHom = f
          @[simp]
          theorem NonUnitalRingHom.coe_addMonoidHom_mk {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : αβ) (h₁ : ∀ (x y : α), f (x * y) = f x * f y) (h₂ : { toFun := f, map_mul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : α), { toFun := f, map_mul' := h₁ }.toFun (x + y) = { toFun := f, map_mul' := h₁ }.toFun x + { toFun := f, map_mul' := h₁ }.toFun y) :
          { toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃ } = { toFun := f, map_zero' := h₂, map_add' := h₃ }
          def NonUnitalRingHom.copy {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (f' : αβ) (h : f' = f) :
          α →ₙ+* β

          Copy of a RingHom with a new toFun equal to the old one. Useful to fix definitional equalities.

          Equations
          • f.copy f' h = { toMulHom := f.copy f' h, map_zero' := , map_add' := }
          Instances For
            @[simp]
            theorem NonUnitalRingHom.coe_copy {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (f' : αβ) (h : f' = f) :
            (f.copy f' h) = f'
            theorem NonUnitalRingHom.copy_eq {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (f' : αβ) (h : f' = f) :
            f.copy f' h = f
            theorem NonUnitalRingHom.ext {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] ⦃f g : α →ₙ+* β :
            (∀ (x : α), f x = g x)f = g
            @[simp]
            theorem NonUnitalRingHom.mk_coe {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) (h₁ : ∀ (x y : α), f (x * y) = f x * f y) (h₂ : { toFun := f, map_mul' := h₁ }.toFun 0 = 0) (h₃ : ∀ (x y : α), { toFun := f, map_mul' := h₁ }.toFun (x + y) = { toFun := f, map_mul' := h₁ }.toFun x + { toFun := f, map_mul' := h₁ }.toFun y) :
            { toFun := f, map_mul' := h₁, map_zero' := h₂, map_add' := h₃ } = f

            The identity non-unital ring homomorphism from a non-unital semiring to itself.

            Equations
            Instances For
              Equations
              @[simp]
              @[simp]
              theorem NonUnitalRingHom.zero_apply {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (x : α) :
              0 x = 0
              @[simp]
              def NonUnitalRingHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) (f : α →ₙ+* β) :
              α →ₙ+* γ

              Composition of non-unital ring homomorphisms is a non-unital ring homomorphism.

              Equations
              • g.comp f = { toMulHom := g.comp f.toMulHom, map_zero' := , map_add' := }
              Instances For
                theorem NonUnitalRingHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] {δ : Type u_5} {x✝ : NonUnitalNonAssocSemiring δ} (f : α →ₙ+* β) (g : β →ₙ+* γ) (h : γ →ₙ+* δ) :
                (h.comp g).comp f = h.comp (g.comp f)

                Composition of non-unital ring homomorphisms is associative.

                @[simp]
                theorem NonUnitalRingHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) (f : α →ₙ+* β) :
                (g.comp f) = g f
                @[simp]
                theorem NonUnitalRingHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) (f : α →ₙ+* β) (x : α) :
                (g.comp f) x = g (f x)
                @[simp]
                theorem NonUnitalRingHom.coe_comp_addMonoidHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) (f : α →ₙ+* β) :
                { toFun := g f, map_zero' := , map_add' := } = (↑g).comp f
                @[simp]
                theorem NonUnitalRingHom.coe_comp_mulHom {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) (f : α →ₙ+* β) :
                { toFun := g f, map_mul' := } = (↑g).comp f
                @[simp]
                theorem NonUnitalRingHom.comp_zero {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] (g : β →ₙ+* γ) :
                g.comp 0 = 0
                @[simp]
                theorem NonUnitalRingHom.comp_id {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) :
                f.comp (NonUnitalRingHom.id α) = f
                @[simp]
                theorem NonUnitalRingHom.id_comp {α : Type u_2} {β : Type u_3} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] (f : α →ₙ+* β) :
                (NonUnitalRingHom.id β).comp f = f
                @[simp]
                theorem NonUnitalRingHom.mul_def {α : Type u_2} [NonUnitalNonAssocSemiring α] (f g : α →ₙ+* α) :
                f * g = f.comp g
                @[simp]
                theorem NonUnitalRingHom.coe_mul {α : Type u_2} [NonUnitalNonAssocSemiring α] (f g : α →ₙ+* α) :
                (f * g) = f g
                @[simp]
                theorem NonUnitalRingHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] {g₁ g₂ : β →ₙ+* γ} {f : α →ₙ+* β} (hf : Function.Surjective f) :
                g₁.comp f = g₂.comp f g₁ = g₂
                @[simp]
                theorem NonUnitalRingHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonUnitalNonAssocSemiring α] [NonUnitalNonAssocSemiring β] [NonUnitalNonAssocSemiring γ] {g : β →ₙ+* γ} {f₁ f₂ : α →ₙ+* β} (hg : Function.Injective g) :
                g.comp f₁ = g.comp f₂ f₁ = f₂
                structure RingHom (α : Type u_5) (β : Type u_6) [NonAssocSemiring α] [NonAssocSemiring β] extends α →* β, α →+ β, α →ₙ+* β, α →*₀ β :
                Type (max u_5 u_6)

                Bundled semiring homomorphisms; use this for bundled ring homomorphisms too.

                This extends from both MonoidHom and MonoidWithZeroHom in order to put the fields in a sensible order, even though MonoidWithZeroHom already extends MonoidHom.

                • toFun : αβ
                • map_one' : (↑self).toFun 1 = 1
                • map_mul' (x y : α) : (↑self).toFun (x * y) = (↑self).toFun x * (↑self).toFun y
                • map_zero' : (↑self).toFun 0 = 0
                • map_add' (x y : α) : (↑self).toFun (x + y) = (↑self).toFun x + (↑self).toFun y
                Instances For

                  α →+* β denotes the type of ring homomorphisms from α to β.

                  Equations
                  Instances For
                    class RingHomClass (F : Type u_5) (α : outParam (Type u_6)) (β : outParam (Type u_7)) [NonAssocSemiring α] [NonAssocSemiring β] [FunLike F α β] extends MonoidHomClass F α β, AddMonoidHomClass F α β, MonoidWithZeroHomClass F α β :

                    RingHomClass F α β states that F is a type of (semi)ring homomorphisms. You should extend this class when you extend RingHom.

                    This extends from both MonoidHomClass and MonoidWithZeroHomClass in order to put the fields in a sensible order, even though MonoidWithZeroHomClass already extends MonoidHomClass.

                    Instances
                      def RingHomClass.toRingHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} [RingHomClass F α β] (f : F) :
                      α →+* β

                      Turn an element of a type F satisfying RingHomClass F α β into an actual RingHom. This is declared as the default coercion from F to α →+* β.

                      Equations
                      • f = { toMonoidHom := f, map_zero' := , map_add' := }
                      Instances For
                        instance instCoeTCRingHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} [RingHomClass F α β] :
                        CoeTC F (α →+* β)

                        Any type satisfying RingHomClass can be cast into RingHom via RingHomClass.toRingHom.

                        Equations
                        @[instance 100]
                        instance RingHomClass.toNonUnitalRingHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} [RingHomClass F α β] :

                        Throughout this section, some Semiring arguments are specified with {} instead of []. See note [implicit instance arguments].

                        instance RingHom.instFunLike {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} :
                        FunLike (α →+* β) α β
                        Equations
                        instance RingHom.instRingHomClass {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} :
                        RingHomClass (α →+* β) α β
                        theorem RingHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                        (↑f).toFun = f
                        @[simp]
                        theorem RingHom.coe_mk {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →* β) (h₁ : (↑f).toFun 0 = 0) (h₂ : ∀ (x y : α), (↑f).toFun (x + y) = (↑f).toFun x + (↑f).toFun y) :
                        { toMonoidHom := f, map_zero' := h₁, map_add' := h₂ } = f
                        @[simp]
                        theorem RingHom.coe_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {F : Type u_5} [FunLike F α β] [RingHomClass F α β] (f : F) :
                        f = f
                        instance RingHom.coeToMonoidHom {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} :
                        Coe (α →+* β) (α →* β)
                        Equations
                        @[simp]
                        theorem RingHom.toMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                        f = f
                        theorem RingHom.toMonoidWithZeroHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                        f.toMonoidWithZeroHom = f
                        @[simp]
                        theorem RingHom.coe_monoidHom_mk {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →* β) (h₁ : (↑f).toFun 0 = 0) (h₂ : ∀ (x y : α), (↑f).toFun (x + y) = (↑f).toFun x + (↑f).toFun y) :
                        { toMonoidHom := f, map_zero' := h₁, map_add' := h₂ } = f
                        @[simp]
                        theorem RingHom.toAddMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                        f.toAddMonoidHom = f
                        @[simp]
                        theorem RingHom.coe_addMonoidHom_mk {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : αβ) (h₁ : f 1 = 1) (h₂ : ∀ (x y : α), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun 0 = 0) (h₄ : ∀ (x y : α), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun (x + y) = (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun x + (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun y) :
                        { toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄ } = { toFun := f, map_zero' := h₃, map_add' := h₄ }
                        def RingHom.copy {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (f' : αβ) (h : f' = f) :
                        α →+* β

                        Copy of a RingHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                        Equations
                        • f.copy f' h = { toMonoidHom := f.toMonoidWithZeroHom.copy f' h, map_zero' := , map_add' := }
                        Instances For
                          @[simp]
                          theorem RingHom.coe_copy {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (f' : αβ) (h : f' = f) :
                          (f.copy f' h) = f'
                          theorem RingHom.copy_eq {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (f' : αβ) (h : f' = f) :
                          f.copy f' h = f
                          theorem RingHom.congr_fun {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {f g : α →+* β} (h : f = g) (x : α) :
                          f x = g x
                          theorem RingHom.congr_arg {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) {x y : α} (h : x = y) :
                          f x = f y
                          theorem RingHom.coe_inj {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} ⦃f g : α →+* β (h : f = g) :
                          f = g
                          theorem RingHom.ext {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} ⦃f g : α →+* β :
                          (∀ (x : α), f x = g x)f = g
                          @[simp]
                          theorem RingHom.mk_coe {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (h₁ : f 1 = 1) (h₂ : ∀ (x y : α), { toFun := f, map_one' := h₁ }.toFun (x * y) = { toFun := f, map_one' := h₁ }.toFun x * { toFun := f, map_one' := h₁ }.toFun y) (h₃ : (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun 0 = 0) (h₄ : ∀ (x y : α), (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun (x + y) = (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun x + (↑{ toFun := f, map_one' := h₁, map_mul' := h₂ }).toFun y) :
                          { toFun := f, map_one' := h₁, map_mul' := h₂, map_zero' := h₃, map_add' := h₄ } = f
                          theorem RingHom.coe_addMonoidHom_injective {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} :
                          Function.Injective fun (f : α →+* β) => f
                          theorem RingHom.coe_monoidHom_injective {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} :
                          Function.Injective fun (f : α →+* β) => f
                          theorem RingHom.map_zero {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                          f 0 = 0

                          Ring homomorphisms map zero to zero.

                          theorem RingHom.map_one {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                          f 1 = 1

                          Ring homomorphisms map one to one.

                          theorem RingHom.map_add {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (a b : α) :
                          f (a + b) = f a + f b

                          Ring homomorphisms preserve addition.

                          theorem RingHom.map_mul {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) (a b : α) :
                          f (a * b) = f a * f b

                          Ring homomorphisms preserve multiplication.

                          @[simp]
                          theorem RingHom.map_ite_zero_one {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {F : Type u_5} [FunLike F α β] [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] :
                          f (if p then 0 else 1) = if p then 0 else 1
                          @[simp]
                          theorem RingHom.map_ite_one_zero {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {F : Type u_5} [FunLike F α β] [RingHomClass F α β] (f : F) (p : Prop) [Decidable p] :
                          f (if p then 1 else 0) = if p then 1 else 0
                          theorem RingHom.codomain_trivial_iff_map_one_eq_zero {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                          0 = 1 f 1 = 0

                          f : α →+* β has a trivial codomain iff f 1 = 0.

                          theorem RingHom.codomain_trivial_iff_range_trivial {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                          0 = 1 ∀ (x : α), f x = 0

                          f : α →+* β has a trivial codomain iff it has a trivial range.

                          theorem RingHom.map_one_ne_zero {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) [Nontrivial β] :
                          f 1 0

                          f : α →+* β doesn't map 1 to 0 if β is nontrivial

                          theorem RingHom.domain_nontrivial {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) [Nontrivial β] :

                          If there is a homomorphism f : α →+* β and β is nontrivial, then α is nontrivial.

                          theorem RingHom.codomain_trivial {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) [h : Subsingleton α] :
                          theorem RingHom.map_neg {α : Type u_2} {β : Type u_3} [NonAssocRing α] [NonAssocRing β] (f : α →+* β) (x : α) :
                          f (-x) = -f x

                          Ring homomorphisms preserve additive inverse.

                          theorem RingHom.map_sub {α : Type u_2} {β : Type u_3} [NonAssocRing α] [NonAssocRing β] (f : α →+* β) (x y : α) :
                          f (x - y) = f x - f y

                          Ring homomorphisms preserve subtraction.

                          def RingHom.mk' {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [NonAssocRing β] (f : α →* β) (map_add : ∀ (a b : α), f (a + b) = f a + f b) :
                          α →+* β

                          Makes a ring homomorphism from a monoid homomorphism of rings which preserves addition.

                          Equations
                          • RingHom.mk' f map_add = { toFun := (↑(AddMonoidHom.mk' (⇑f) map_add)).toFun, map_one' := , map_mul' := , map_zero' := , map_add' := }
                          Instances For
                            def RingHom.id (α : Type u_5) [NonAssocSemiring α] :
                            α →+* α

                            The identity ring homomorphism from a semiring to itself.

                            Equations
                            • RingHom.id α = { toFun := id, map_one' := , map_mul' := , map_zero' := , map_add' := }
                            Instances For
                              instance RingHom.instInhabited {α : Type u_2} {x✝ : NonAssocSemiring α} :
                              Equations
                              @[simp]
                              theorem RingHom.coe_id {α : Type u_2} {x✝ : NonAssocSemiring α} :
                              (RingHom.id α) = id
                              @[simp]
                              theorem RingHom.id_apply {α : Type u_2} {x✝ : NonAssocSemiring α} (x : α) :
                              (RingHom.id α) x = x
                              @[simp]
                              @[simp]
                              theorem RingHom.coe_monoidHom_id {α : Type u_2} {x✝ : NonAssocSemiring α} :
                              def RingHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} (g : β →+* γ) (f : α →+* β) :
                              α →+* γ

                              Composition of ring homomorphisms is a ring homomorphism.

                              Equations
                              • g.comp f = { toFun := g f, map_one' := , map_mul' := , map_zero' := , map_add' := }
                              Instances For
                                theorem RingHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} {δ : Type u_5} {x✝³ : NonAssocSemiring δ} (f : α →+* β) (g : β →+* γ) (h : γ →+* δ) :
                                (h.comp g).comp f = h.comp (g.comp f)

                                Composition of semiring homomorphisms is associative.

                                @[simp]
                                theorem RingHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} (hnp : β →+* γ) (hmn : α →+* β) :
                                (hnp.comp hmn) = hnp hmn
                                theorem RingHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} (hnp : β →+* γ) (hmn : α →+* β) (x : α) :
                                (hnp.comp hmn) x = hnp (hmn x)
                                @[simp]
                                theorem RingHom.comp_id {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                                f.comp (RingHom.id α) = f
                                @[simp]
                                theorem RingHom.id_comp {α : Type u_2} {β : Type u_3} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} (f : α →+* β) :
                                (RingHom.id β).comp f = f
                                instance RingHom.instOne {α : Type u_2} {x✝ : NonAssocSemiring α} :
                                One (α →+* α)
                                Equations
                                instance RingHom.instMul {α : Type u_2} {x✝ : NonAssocSemiring α} :
                                Mul (α →+* α)
                                Equations
                                theorem RingHom.one_def {α : Type u_2} {x✝ : NonAssocSemiring α} :
                                theorem RingHom.mul_def {α : Type u_2} {x✝ : NonAssocSemiring α} (f g : α →+* α) :
                                f * g = f.comp g
                                @[simp]
                                theorem RingHom.coe_one {α : Type u_2} {x✝ : NonAssocSemiring α} :
                                1 = id
                                @[simp]
                                theorem RingHom.coe_mul {α : Type u_2} {x✝ : NonAssocSemiring α} (f g : α →+* α) :
                                (f * g) = f g
                                instance RingHom.instMonoid {α : Type u_2} {x✝ : NonAssocSemiring α} :
                                Monoid (α →+* α)
                                Equations
                                @[simp]
                                theorem RingHom.coe_pow {α : Type u_2} {x✝ : NonAssocSemiring α} (f : α →+* α) (n : ) :
                                (f ^ n) = (⇑f)^[n]
                                @[simp]
                                theorem RingHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} {g₁ g₂ : β →+* γ} {f : α →+* β} (hf : Function.Surjective f) :
                                g₁.comp f = g₂.comp f g₁ = g₂
                                @[simp]
                                theorem RingHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} {x✝ : NonAssocSemiring α} {x✝¹ : NonAssocSemiring β} {x✝² : NonAssocSemiring γ} {g : β →+* γ} {f₁ f₂ : α →+* β} (hg : Function.Injective g) :
                                g.comp f₁ = g.comp f₂ f₁ = f₂
                                theorem RingHom.map_pow {α : Type u_2} {β : Type u_3} [Semiring α] [Semiring β] (f : α →+* β) (a : α) (n : ) :
                                f (a ^ n) = f a ^ n
                                def AddMonoidHom.mkRingHomOfMulSelfOfTwoNeZero {α : Type u_2} {β : Type u_3} [CommRing α] [IsDomain α] [CommRing β] (f : β →+ α) (h : ∀ (x : β), f (x * x) = f x * f x) (h_two : 2 0) (h_one : f 1 = 1) :
                                β →+* α

                                Make a ring homomorphism from an additive group homomorphism from a commutative ring to an integral domain that commutes with self multiplication, assumes that two is nonzero and 1 is sent to 1.

                                Equations
                                • f.mkRingHomOfMulSelfOfTwoNeZero h h_two h_one = { toFun := (↑f).toFun, map_one' := h_one, map_mul' := , map_zero' := , map_add' := }
                                Instances For
                                  @[simp]
                                  theorem AddMonoidHom.coe_fn_mkRingHomOfMulSelfOfTwoNeZero {α : Type u_2} {β : Type u_3} [CommRing α] [IsDomain α] [CommRing β] (f : β →+ α) (h : ∀ (x : β), f (x * x) = f x * f x) (h_two : 2 0) (h_one : f 1 = 1) :
                                  (f.mkRingHomOfMulSelfOfTwoNeZero h h_two h_one) = f
                                  @[simp]
                                  theorem AddMonoidHom.coe_addMonoidHom_mkRingHomOfMulSelfOfTwoNeZero {α : Type u_2} {β : Type u_3} [CommRing α] [IsDomain α] [CommRing β] (f : β →+ α) (h : ∀ (x : β), f (x * x) = f x * f x) (h_two : 2 0) (h_one : f 1 = 1) :
                                  (f.mkRingHomOfMulSelfOfTwoNeZero h h_two h_one) = f