Documentation

Mathlib.Algebra.Star.NonUnitalSubalgebra

Non-unital Star Subalgebras #

In this file we define NonUnitalStarSubalgebras and the usual operations on them (map, comap).

TODO #

instance StarMemClass.instInvolutiveStar {S : Type u_1} {R : Type u_2} [InvolutiveStar R] [SetLike S R] [StarMemClass S R] (s : S) :

If a type carries an involutive star, then any star-closed subset does too.

Equations
instance StarMemClass.instStarMul {S : Type u_1} {R : Type u_2} [Mul R] [StarMul R] [SetLike S R] [MulMemClass S R] [StarMemClass S R] (s : S) :
StarMul s

In a star magma (i.e., a multiplication with an antimultiplicative involutive star operation), any star-closed subset which is also closed under multiplication is itself a star magma.

Equations
instance StarMemClass.instStarAddMonoid {S : Type u_1} {R : Type u_2} [AddMonoid R] [StarAddMonoid R] [SetLike S R] [AddSubmonoidClass S R] [StarMemClass S R] (s : S) :

In a StarAddMonoid (i.e., an additive monoid with an additive involutive star operation), any star-closed subset which is also closed under addition and contains zero is itself a StarAddMonoid.

Equations

In a star ring (i.e., a non-unital, non-associative, semiring with an additive, antimultiplicative, involutive star operation), a star-closed non-unital subsemiring is itself a star ring.

Equations
instance StarMemClass.instStarModule {S : Type u_1} (R : Type u_2) {M : Type u_3} [Star R] [Star M] [SMul R M] [StarModule R M] [SetLike S M] [SMulMemClass S R M] [StarMemClass S M] (s : S) :
StarModule R s

In a star R-module (i.e., star (r • m) = (star r) • m) any star-closed subset which is also closed under the scalar action by R is itself a star R-module.

Embedding of a non-unital star subalgebra into the non-unital star algebra.

Equations
Instances For

    A non-unital star subalgebra is a non-unital subalgebra which is closed under the star operation.

    Instances For
      Equations
      theorem NonUnitalStarSubalgebra.mem_carrier {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] {s : NonUnitalStarSubalgebra R A} {x : A} :
      x s.carrier x s
      theorem NonUnitalStarSubalgebra.ext {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] {S T : NonUnitalStarSubalgebra R A} (h : ∀ (x : A), x S x T) :
      S = T
      @[simp]
      theorem NonUnitalStarSubalgebra.mem_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] {S : NonUnitalStarSubalgebra R A} {x : A} :
      x S.toNonUnitalSubalgebra x S
      @[simp]
      theorem NonUnitalStarSubalgebra.coe_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) :
      S.toNonUnitalSubalgebra = S
      theorem NonUnitalStarSubalgebra.toNonUnitalSubalgebra_inj {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] {S U : NonUnitalStarSubalgebra R A} :
      S.toNonUnitalSubalgebra = U.toNonUnitalSubalgebra S = U
      theorem NonUnitalStarSubalgebra.toNonUnitalSubalgebra_le_iff {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] {S₁ S₂ : NonUnitalStarSubalgebra R A} :
      S₁.toNonUnitalSubalgebra S₂.toNonUnitalSubalgebra S₁ S₂

      Copy of a non-unital star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

      Equations
      • S.copy s hs = { toNonUnitalSubalgebra := S.copy s hs, star_mem' := }
      Instances For
        @[simp]
        theorem NonUnitalStarSubalgebra.coe_copy {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) (s : Set A) (hs : s = S) :
        (S.copy s hs) = s
        theorem NonUnitalStarSubalgebra.copy_eq {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) (s : Set A) (hs : s = S) :
        S.copy s hs = S

        A non-unital star subalgebra over a ring is also a Subring.

        Equations
        • S.toNonUnitalSubring = { toNonUnitalSubsemiring := S.toNonUnitalSubsemiring, neg_mem' := }
        Instances For
          @[simp]
          theorem NonUnitalStarSubalgebra.mem_toNonUnitalSubring {R : Type u} {A : Type v} [CommRing R] [NonUnitalRing A] [Module R A] [Star A] {S : NonUnitalStarSubalgebra R A} {x : A} :
          x S.toNonUnitalSubring x S
          @[simp]
          theorem NonUnitalStarSubalgebra.coe_toNonUnitalSubring {R : Type u} {A : Type v} [CommRing R] [NonUnitalRing A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) :
          S.toNonUnitalSubring = S
          theorem NonUnitalStarSubalgebra.toNonUnitalSubring_inj {R : Type u} {A : Type v} [CommRing R] [NonUnitalRing A] [Module R A] [Star A] {S U : NonUnitalStarSubalgebra R A} :
          S.toNonUnitalSubring = U.toNonUnitalSubring S = U
          Equations
          • S.instInhabited = { default := 0 }

          NonUnitalStarSubalgebras inherit structure from their NonUnitalSubsemiringClass and NonUnitalSubringClass instances.

          Equations
          Equations
          Equations

          The forgetful map from NonUnitalStarSubalgebra to NonUnitalSubalgebra as an OrderEmbedding

          Equations
          Instances For

            NonUnitalStarSubalgebras inherit structure from their Submodule coercions.

            instance NonUnitalStarSubalgebra.module' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] :
            Module R' S
            Equations
            Equations
            • S.instModule = S.module'
            instance NonUnitalStarSubalgebra.instSMulCommClass' {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] [SMulCommClass R' R A] :
            SMulCommClass R' R S
            theorem NonUnitalStarSubalgebra.coe_add {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) (x y : S) :
            (x + y) = x + y
            theorem NonUnitalStarSubalgebra.coe_mul {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) (x y : S) :
            (x * y) = x * y
            theorem NonUnitalStarSubalgebra.coe_neg {R : Type u} {A : Type v} [CommRing R] [NonUnitalRing A] [Module R A] [Star A] {S : NonUnitalStarSubalgebra R A} (x : S) :
            (-x) = -x
            theorem NonUnitalStarSubalgebra.coe_sub {R : Type u} {A : Type v} [CommRing R] [NonUnitalRing A] [Module R A] [Star A] {S : NonUnitalStarSubalgebra R A} (x y : S) :
            (x - y) = x - y
            @[simp]
            theorem NonUnitalStarSubalgebra.coe_smul {R' : Type u'} {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) [Semiring R'] [SMul R' R] [Module R' A] [IsScalarTower R' R A] (r : R') (x : S) :
            (r x) = r x
            theorem NonUnitalStarSubalgebra.coe_eq_zero {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) {x : S} :
            x = 0 x = 0

            Transport a non-unital star subalgebra via a non-unital star algebra homomorphism.

            Equations
            Instances For
              theorem NonUnitalStarSubalgebra.map_mono {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S₁ S₂ : NonUnitalStarSubalgebra R A} {f : F} :
              @[simp]
              theorem NonUnitalStarSubalgebra.mem_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} {y : B} :
              y NonUnitalStarSubalgebra.map f S xS, f x = y
              theorem NonUnitalStarSubalgebra.map_toNonUnitalSubalgebra {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {S : NonUnitalStarSubalgebra R A} {f : F} :
              (NonUnitalStarSubalgebra.map f S).toNonUnitalSubalgebra = NonUnitalSubalgebra.map f S.toNonUnitalSubalgebra
              @[simp]
              theorem NonUnitalStarSubalgebra.coe_map {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (S : NonUnitalStarSubalgebra R A) (f : F) :
              (NonUnitalStarSubalgebra.map f S) = f '' S

              Preimage of a non-unital star subalgebra under a non-unital star algebra homomorphism.

              Equations
              Instances For
                @[simp]
                theorem NonUnitalStarSubalgebra.mem_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (S : NonUnitalStarSubalgebra R B) (f : F) (x : A) :
                @[simp]
                theorem NonUnitalStarSubalgebra.coe_comap {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (S : NonUnitalStarSubalgebra R B) (f : F) :

                A non-unital subalgebra closed under star is a non-unital star subalgebra.

                Equations
                • s.toNonUnitalStarSubalgebra h_star = { toNonUnitalSubalgebra := s, star_mem' := h_star }
                Instances For
                  @[simp]
                  theorem NonUnitalSubalgebra.mem_toNonUnitalStarSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] {s : NonUnitalSubalgebra R A} {h_star : xs, star x s} {x : A} :
                  x s.toNonUnitalStarSubalgebra h_star x s
                  @[simp]
                  theorem NonUnitalSubalgebra.coe_toNonUnitalStarSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] (s : NonUnitalSubalgebra R A) (h_star : xs, star x s) :
                  (s.toNonUnitalStarSubalgebra h_star) = s
                  @[simp]
                  theorem NonUnitalSubalgebra.toNonUnitalStarSubalgebra_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] (s : NonUnitalSubalgebra R A) (h_star : xs, star x s) :
                  (s.toNonUnitalStarSubalgebra h_star).toNonUnitalSubalgebra = s
                  @[simp]
                  theorem NonUnitalStarSubalgebra.toNonUnitalSubalgebra_toNonUnitalStarSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] (S : NonUnitalStarSubalgebra R A) :
                  S.toNonUnitalStarSubalgebra = S
                  def NonUnitalStarAlgHom.range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (φ : F) :

                  Range of an NonUnitalAlgHom as a NonUnitalStarSubalgebra.

                  Equations
                  Instances For
                    @[simp]
                    theorem NonUnitalStarAlgHom.mem_range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (φ : F) {y : B} :
                    y NonUnitalStarAlgHom.range φ ∃ (x : A), φ x = y
                    theorem NonUnitalStarAlgHom.mem_range_self {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (φ : F) (x : A) :
                    @[simp]
                    theorem NonUnitalStarAlgHom.coe_range {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (φ : F) :
                    def NonUnitalStarAlgHom.codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) (hf : ∀ (x : A), f x S) :

                    Restrict the codomain of a non-unital star algebra homomorphism.

                    Equations
                    Instances For
                      @[simp]
                      theorem NonUnitalStarAlgHom.subtype_comp_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) (hf : ∀ (x : A), f x S) :
                      @[simp]
                      theorem NonUnitalStarAlgHom.coe_codRestrict {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (S : NonUnitalStarSubalgebra R B) (hf : ∀ (x : A), f x S) (x : A) :
                      @[reducible, inline]

                      Restrict the codomain of a non-unital star algebra homomorphism f to f.range.

                      This is the bundled version of Set.rangeFactorization.

                      Equations
                      Instances For
                        def NonUnitalStarAlgHom.equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (ϕ ψ : F) :

                        The equalizer of two non-unital star R-algebra homomorphisms

                        Equations
                        Instances For
                          @[simp]
                          theorem NonUnitalStarAlgHom.mem_equalizer {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalNonAssocSemiring A] [Module R A] [Star A] [NonUnitalNonAssocSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (φ ψ : F) (x : A) :
                          def StarAlgEquiv.ofLeftInverse' {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] [NonUnitalSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {g : BA} {f : F} (h : Function.LeftInverse g f) :

                          Restrict a non-unital star algebra homomorphism with a left inverse to an algebra isomorphism to its range.

                          This is a computable alternative to StarAlgEquiv.ofInjective.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            @[simp]
                            theorem StarAlgEquiv.ofLeftInverse'_apply {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] [NonUnitalSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {g : BA} {f : F} (h : Function.LeftInverse g f) (x : A) :
                            @[simp]
                            theorem StarAlgEquiv.ofLeftInverse'_symm_apply {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] [NonUnitalSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] {g : BA} {f : F} (h : Function.LeftInverse g f) (x : (NonUnitalStarAlgHom.range f)) :
                            (StarAlgEquiv.ofLeftInverse' h).symm x = g x
                            noncomputable def StarAlgEquiv.ofInjective' {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] [NonUnitalSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (hf : Function.Injective f) :

                            Restrict an injective non-unital star algebra homomorphism to a star algebra isomorphism

                            Equations
                            Instances For
                              @[simp]
                              theorem StarAlgEquiv.ofInjective'_apply {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [Module R A] [Star A] [NonUnitalSemiring B] [Module R B] [Star B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] (f : F) (hf : Function.Injective f) (x : A) :
                              ((StarAlgEquiv.ofInjective' f hf) x) = f x

                              The star closure of a subalgebra #

                              The pointwise star of a non-unital subalgebra is a non-unital subalgebra.

                              Equations
                              @[simp]
                              theorem NonUnitalSubalgebra.mem_star_iff {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] (S : NonUnitalSubalgebra R A) (x : A) :
                              x star S star x S
                              @[simp]
                              theorem NonUnitalSubalgebra.coe_star {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] (S : NonUnitalSubalgebra R A) :
                              (star S) = star S

                              The NonUnitalStarSubalgebra obtained from S : NonUnitalSubalgebra R A by taking the smallest non-unital subalgebra containing both S and star S.

                              Equations
                              • S.starClosure = { toNonUnitalSubalgebra := S star S, star_mem' := }
                              Instances For
                                @[simp]
                                theorem NonUnitalSubalgebra.starClosure_carrier {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] [IsScalarTower R A A] [SMulCommClass R A A] (S : NonUnitalSubalgebra R A) :
                                S.starClosure = ⋂ (s : Submodule R A), ⋂ (_ : (NonUnitalSubsemiring.closure (S star S)) s), s
                                theorem NonUnitalSubalgebra.starClosure_le {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] [IsScalarTower R A A] [SMulCommClass R A A] {S₁ : NonUnitalSubalgebra R A} {S₂ : NonUnitalStarSubalgebra R A} (h : S₁ S₂.toNonUnitalSubalgebra) :
                                S₁.starClosure S₂
                                theorem NonUnitalSubalgebra.starClosure_le_iff {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] [IsScalarTower R A A] [SMulCommClass R A A] {S₁ : NonUnitalSubalgebra R A} {S₂ : NonUnitalStarSubalgebra R A} :
                                S₁.starClosure S₂ S₁ S₂.toNonUnitalSubalgebra
                                @[simp]
                                theorem NonUnitalSubalgebra.starClosure_toNonunitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarModule R A] [IsScalarTower R A A] [SMulCommClass R A A] {S : NonUnitalSubalgebra R A} :
                                S.starClosure.toNonUnitalSubalgebra = S star S

                                The minimal non-unital subalgebra that includes s.

                                Equations
                                Instances For
                                  theorem NonUnitalStarAlgebra.adjoin_induction (R : Type u) {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {s : Set A} {p : (x : A) → x NonUnitalStarAlgebra.adjoin R sProp} (mem : ∀ (x : A) (hx : x s), p x ) (add : ∀ (x y : A) (hx : x NonUnitalStarAlgebra.adjoin R s) (hy : y NonUnitalStarAlgebra.adjoin R s), p x hxp y hyp (x + y) ) (zero : p 0 ) (mul : ∀ (x y : A) (hx : x NonUnitalStarAlgebra.adjoin R s) (hy : y NonUnitalStarAlgebra.adjoin R s), p x hxp y hyp (x * y) ) (smul : ∀ (r : R) (x : A) (hx : x NonUnitalStarAlgebra.adjoin R s), p x hxp (r x) ) (star : ∀ (x : A) (hx : x NonUnitalStarAlgebra.adjoin R s), p x hxp (star x) ) {a : A} (ha : a NonUnitalStarAlgebra.adjoin R s) :
                                  p a ha
                                  @[deprecated NonUnitalStarAlgebra.adjoin_induction (since := "2024-10-10")]
                                  theorem NonUnitalStarAlgebra.adjoin_induction' (R : Type u) {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {s : Set A} {p : (x : A) → x NonUnitalStarAlgebra.adjoin R sProp} (mem : ∀ (x : A) (hx : x s), p x ) (add : ∀ (x y : A) (hx : x NonUnitalStarAlgebra.adjoin R s) (hy : y NonUnitalStarAlgebra.adjoin R s), p x hxp y hyp (x + y) ) (zero : p 0 ) (mul : ∀ (x y : A) (hx : x NonUnitalStarAlgebra.adjoin R s) (hy : y NonUnitalStarAlgebra.adjoin R s), p x hxp y hyp (x * y) ) (smul : ∀ (r : R) (x : A) (hx : x NonUnitalStarAlgebra.adjoin R s), p x hxp (r x) ) (star : ∀ (x : A) (hx : x NonUnitalStarAlgebra.adjoin R s), p x hxp (star x) ) {a : A} (ha : a NonUnitalStarAlgebra.adjoin R s) :
                                  p a ha

                                  Alias of NonUnitalStarAlgebra.adjoin_induction.

                                  Galois insertion between adjoin and Subtype.val.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    @[simp]
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.mem_top {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {x : A} :
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.top_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] :
                                    .toNonUnitalSubalgebra =
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.toNonUnitalSubalgebra_eq_top {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S : NonUnitalStarSubalgebra R A} :
                                    S.toNonUnitalSubalgebra = S =
                                    theorem NonUnitalStarAlgebra.mem_sup_left {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} {x : A} :
                                    x Sx S T
                                    theorem NonUnitalStarAlgebra.mem_sup_right {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} {x : A} :
                                    x Tx S T
                                    theorem NonUnitalStarAlgebra.mul_mem_sup {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} {x y : A} (hx : x S) (hy : y T) :
                                    x * y S T
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.coe_inf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (S T : NonUnitalStarSubalgebra R A) :
                                    (S T) = S T
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.mem_inf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} {x : A} :
                                    x S T x S x T
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.inf_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (S T : NonUnitalStarSubalgebra R A) :
                                    (S T).toNonUnitalSubalgebra = S.toNonUnitalSubalgebra T.toNonUnitalSubalgebra
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.coe_sInf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] (S : Set (NonUnitalStarSubalgebra R A)) :
                                    (sInf S) = sS, s
                                    theorem NonUnitalStarAlgebra.mem_sInf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S : Set (NonUnitalStarSubalgebra R A)} {x : A} :
                                    x sInf S pS, x p
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.coe_iInf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {ι : Sort u_1} {S : ιNonUnitalStarSubalgebra R A} :
                                    (⨅ (i : ι), S i) = ⋂ (i : ι), (S i)
                                    theorem NonUnitalStarAlgebra.mem_iInf {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {ι : Sort u_1} {S : ιNonUnitalStarSubalgebra R A} {x : A} :
                                    x ⨅ (i : ι), S i ∀ (i : ι), x S i
                                    theorem NonUnitalStarAlgebra.map_iInf {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {ι : Sort u_1} [Nonempty ι] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) (hf : Function.Injective f) (S : ιNonUnitalStarSubalgebra R A) :
                                    NonUnitalStarSubalgebra.map f (⨅ (i : ι), S i) = ⨅ (i : ι), NonUnitalStarSubalgebra.map f (S i)
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.iInf_toNonUnitalSubalgebra {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {ι : Sort u_1} (S : ιNonUnitalStarSubalgebra R A) :
                                    (⨅ (i : ι), S i).toNonUnitalSubalgebra = ⨅ (i : ι), (S i).toNonUnitalSubalgebra
                                    theorem NonUnitalStarAlgebra.mem_bot {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {x : A} :
                                    x x = 0
                                    theorem NonUnitalStarAlgebra.toNonUnitalSubalgebra_bot {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] :
                                    .toNonUnitalSubalgebra =
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.coe_bot {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] :
                                    = {0}
                                    theorem NonUnitalStarAlgebra.eq_top_iff {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S : NonUnitalStarSubalgebra R A} :
                                    S = ∀ (x : A), x S
                                    @[simp]
                                    theorem NonUnitalStarAlgebra.map_bot {F : Type v'} {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [FunLike F A B] [NonUnitalAlgHomClass F R A B] [StarHomClass F A B] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] (f : F) :
                                    @[simp]
                                    @[deprecated NonUnitalStarAlgebra.range_eq_top (since := "2024-11-11")]

                                    Alias of NonUnitalStarAlgebra.range_eq_top.

                                    The map S → T when S is a non-unital star subalgebra contained in the non-unital star algebra T.

                                    This is the non-unital star subalgebra version of Submodule.inclusion, or NonUnitalSubalgebra.inclusion

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem NonUnitalStarSubalgebra.inclusion_mk {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} (h : S T) (x : A) (hx : x S) :
                                      (NonUnitalStarSubalgebra.inclusion h) x, hx = x,
                                      theorem NonUnitalStarSubalgebra.inclusion_right {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} (h : S T) (x : T) (m : x S) :
                                      @[simp]
                                      theorem NonUnitalStarSubalgebra.val_inclusion {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {S T : NonUnitalStarSubalgebra R A} (h : S T) (s : S) :

                                      The product of two non-unital star subalgebras is a non-unital star subalgebra.

                                      Equations
                                      • S.prod S₁ = { carrier := S ×ˢ S₁, add_mem' := , zero_mem' := , mul_mem' := , smul_mem' := , star_mem' := }
                                      Instances For
                                        @[simp]
                                        theorem NonUnitalStarSubalgebra.coe_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] (S : NonUnitalStarSubalgebra R A) (S₁ : NonUnitalStarSubalgebra R B) :
                                        (S.prod S₁) = S ×ˢ S₁
                                        theorem NonUnitalStarSubalgebra.prod_toNonUnitalSubalgebra {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] (S : NonUnitalStarSubalgebra R A) (S₁ : NonUnitalStarSubalgebra R B) :
                                        (S.prod S₁).toNonUnitalSubalgebra = S.prod S₁.toNonUnitalSubalgebra
                                        @[simp]
                                        theorem NonUnitalStarSubalgebra.mem_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {S : NonUnitalStarSubalgebra R A} {S₁ : NonUnitalStarSubalgebra R B} {x : A × B} :
                                        x S.prod S₁ x.1 S x.2 S₁
                                        @[simp]
                                        theorem NonUnitalStarSubalgebra.prod_top {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] :
                                        .prod =
                                        theorem NonUnitalStarSubalgebra.prod_mono {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] {S T : NonUnitalStarSubalgebra R A} {S₁ T₁ : NonUnitalStarSubalgebra R B} :
                                        S TS₁ T₁S.prod S₁ T.prod T₁
                                        @[simp]
                                        theorem NonUnitalStarSubalgebra.prod_inf_prod {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [IsScalarTower R B B] [SMulCommClass R B B] [StarModule R B] {S T : NonUnitalStarSubalgebra R A} {S₁ T₁ : NonUnitalStarSubalgebra R B} :
                                        S.prod S₁ T.prod T₁ = (S T).prod (S₁ T₁)
                                        theorem NonUnitalStarSubalgebra.coe_iSup_of_directed {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] {S : ιNonUnitalStarSubalgebra R A} (dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) S) :
                                        (iSup S) = ⋃ (i : ι), (S i)
                                        noncomputable def NonUnitalStarSubalgebra.iSupLift {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] (K : ιNonUnitalStarSubalgebra R A) (dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) K) (f : (i : ι) → (K i) →⋆ₙₐ[R] B) (hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (NonUnitalStarSubalgebra.inclusion h)) (T : NonUnitalStarSubalgebra R A) (hT : T = iSup K) :

                                        Define a non-unital star algebra homomorphism on a directed supremum of non-unital star subalgebras by defining it on each non-unital star subalgebra, and proving that it agrees on the intersection of non-unital star subalgebras.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem NonUnitalStarSubalgebra.iSupLift_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] {K : ιNonUnitalStarSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →⋆ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (NonUnitalStarSubalgebra.inclusion h)} {T : NonUnitalStarSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (h : K i T) :
                                          @[simp]
                                          theorem NonUnitalStarSubalgebra.iSupLift_comp_inclusion {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] {K : ιNonUnitalStarSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →⋆ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (NonUnitalStarSubalgebra.inclusion h)} {T : NonUnitalStarSubalgebra R A} {hT : T = iSup K} {i : ι} (h : K i T) :
                                          @[simp]
                                          theorem NonUnitalStarSubalgebra.iSupLift_mk {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] {K : ιNonUnitalStarSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →⋆ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (NonUnitalStarSubalgebra.inclusion h)} {T : NonUnitalStarSubalgebra R A} {hT : T = iSup K} {i : ι} (x : (K i)) (hx : x T) :
                                          (NonUnitalStarSubalgebra.iSupLift K dir f hf T hT) x, hx = (f i) x
                                          theorem NonUnitalStarSubalgebra.iSupLift_of_mem {R : Type u} {A : Type v} {B : Type w} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [NonUnitalSemiring B] [StarRing B] [Module R B] {ι : Type u_1} [StarRing R] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] [Nonempty ι] {K : ιNonUnitalStarSubalgebra R A} {dir : Directed (fun (x1 x2 : NonUnitalStarSubalgebra R A) => x1 x2) K} {f : (i : ι) → (K i) →⋆ₙₐ[R] B} {hf : ∀ (i j : ι) (h : K i K j), f i = (f j).comp (NonUnitalStarSubalgebra.inclusion h)} {T : NonUnitalStarSubalgebra R A} {hT : T = iSup K} {i : ι} (x : T) (hx : x K i) :
                                          (NonUnitalStarSubalgebra.iSupLift K dir f hf T hT) x = (f i) x, hx

                                          The center of a non-unital star algebra is the set of elements which commute with every element. They form a non-unital star subalgebra.

                                          Equations
                                          Instances For
                                            theorem NonUnitalStarSubalgebra.mem_center_iff {R : Type u} {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {a : A} :
                                            a NonUnitalStarSubalgebra.center R A ∀ (b : A), b * a = a * b

                                            The centralizer of the star-closure of a set as a non-unital star subalgebra.

                                            Equations
                                            Instances For
                                              @[simp]
                                              theorem NonUnitalStarSubalgebra.mem_centralizer_iff (R : Type u) {A : Type v} [CommSemiring R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] {s : Set A} {z : A} :
                                              z NonUnitalStarSubalgebra.centralizer R s gs, g * z = z * g star g * z = z * star g
                                              theorem NonUnitalStarAlgebra.commute_of_mem_adjoin_of_forall_mem_commute {R : Type u} {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {a b : A} {s : Set A} (hb : b NonUnitalStarAlgebra.adjoin R s) (h : bs, Commute a b) (h_star : bs, Commute a (star b)) :
                                              @[reducible, inline]
                                              abbrev NonUnitalStarAlgebra.adjoinNonUnitalCommSemiringOfComm (R : Type u) {A : Type v} [CommSemiring R] [StarRing R] [NonUnitalSemiring A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {s : Set A} (hcomm : as, bs, a * b = b * a) (hcomm_star : as, bs, a * star b = star b * a) :

                                              If all elements of s : Set A commute pairwise and with elements of star s, then adjoin R s is a non-unital commutative semiring.

                                              See note [reducible non-instances].

                                              Equations
                                              Instances For
                                                @[reducible, inline]
                                                abbrev NonUnitalStarAlgebra.adjoinNonUnitalCommRingOfComm (R : Type u_1) {A : Type u_2} [CommRing R] [StarRing R] [NonUnitalRing A] [StarRing A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [StarModule R A] {s : Set A} (hcomm : as, bs, a * b = b * a) (hcomm_star : as, bs, a * star b = star b * a) :

                                                If all elements of s : Set A commute pairwise and with elements of star s, then adjoin R s is a non-unital commutative ring.

                                                See note [reducible non-instances].

                                                Equations
                                                Instances For