Documentation

Mathlib.Algebra.ZeroOne.Lemmas

Lemmas about inequalities with 1. #

theorem one_le_dite {α : Type u_1} [One α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LE α] (ha : ∀ (h : p), 1 a h) (hb : ∀ (h : ¬p), 1 b h) :
1 dite p a b
theorem dite_nonneg {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LE α] (ha : ∀ (h : p), 0 a h) (hb : ∀ (h : ¬p), 0 b h) :
0 dite p a b
theorem dite_le_one {α : Type u_1} [One α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LE α] (ha : ∀ (h : p), a h 1) (hb : ∀ (h : ¬p), b h 1) :
dite p a b 1
theorem dite_nonpos {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LE α] (ha : ∀ (h : p), a h 0) (hb : ∀ (h : ¬p), b h 0) :
dite p a b 0
theorem one_lt_dite {α : Type u_1} [One α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LT α] (ha : ∀ (h : p), 1 < a h) (hb : ∀ (h : ¬p), 1 < b h) :
1 < dite p a b
theorem dite_pos {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LT α] (ha : ∀ (h : p), 0 < a h) (hb : ∀ (h : ¬p), 0 < b h) :
0 < dite p a b
theorem dite_lt_one {α : Type u_1} [One α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LT α] (ha : ∀ (h : p), a h < 1) (hb : ∀ (h : ¬p), b h < 1) :
dite p a b < 1
theorem dite_neg {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a : pα} {b : ¬pα} [LT α] (ha : ∀ (h : p), a h < 0) (hb : ∀ (h : ¬p), b h < 0) :
dite p a b < 0
theorem one_le_ite {α : Type u_1} [One α] {p : Prop} [Decidable p] {a b : α} [LE α] (ha : 1 a) (hb : 1 b) :
1 if p then a else b
theorem ite_nonneg {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a b : α} [LE α] (ha : 0 a) (hb : 0 b) :
0 if p then a else b
theorem ite_le_one {α : Type u_1} [One α] {p : Prop} [Decidable p] {a b : α} [LE α] (ha : a 1) (hb : b 1) :
(if p then a else b) 1
theorem ite_nonpos {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a b : α} [LE α] (ha : a 0) (hb : b 0) :
(if p then a else b) 0
theorem one_lt_ite {α : Type u_1} [One α] {p : Prop} [Decidable p] {a b : α} [LT α] (ha : 1 < a) (hb : 1 < b) :
1 < if p then a else b
theorem ite_pos {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a b : α} [LT α] (ha : 0 < a) (hb : 0 < b) :
0 < if p then a else b
theorem ite_lt_one {α : Type u_1} [One α] {p : Prop} [Decidable p] {a b : α} [LT α] (ha : a < 1) (hb : b < 1) :
(if p then a else b) < 1
theorem ite_neg {α : Type u_1} [Zero α] {p : Prop} [Decidable p] {a b : α} [LT α] (ha : a < 0) (hb : b < 0) :
(if p then a else b) < 0