Documentation
Mathlib
.
Algebra
.
ZeroOne
.
Lemmas
Search
return to top
source
Imports
Init
Batteries.Tactic.Init
Mathlib.Tactic.Lemma
Mathlib.Tactic.ToAdditive
Mathlib.Data.One.Defs
Imported by
one_le_dite
dite_nonneg
dite_le_one
dite_nonpos
one_lt_dite
dite_pos
dite_lt_one
dite_neg
one_le_ite
ite_nonneg
ite_le_one
ite_nonpos
one_lt_ite
ite_pos
ite_lt_one
ite_neg
Lemmas about inequalities with
1
.
#
source
theorem
one_le_dite
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LE
α
]
(ha :
∀ (
h
:
p
),
1
≤
a
h
)
(hb :
∀ (
h
:
¬
p
),
1
≤
b
h
)
:
1
≤
dite
p
a
b
source
theorem
dite_nonneg
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LE
α
]
(ha :
∀ (
h
:
p
),
0
≤
a
h
)
(hb :
∀ (
h
:
¬
p
),
0
≤
b
h
)
:
0
≤
dite
p
a
b
source
theorem
dite_le_one
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LE
α
]
(ha :
∀ (
h
:
p
),
a
h
≤
1
)
(hb :
∀ (
h
:
¬
p
),
b
h
≤
1
)
:
dite
p
a
b
≤
1
source
theorem
dite_nonpos
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LE
α
]
(ha :
∀ (
h
:
p
),
a
h
≤
0
)
(hb :
∀ (
h
:
¬
p
),
b
h
≤
0
)
:
dite
p
a
b
≤
0
source
theorem
one_lt_dite
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LT
α
]
(ha :
∀ (
h
:
p
),
1
<
a
h
)
(hb :
∀ (
h
:
¬
p
),
1
<
b
h
)
:
1
<
dite
p
a
b
source
theorem
dite_pos
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LT
α
]
(ha :
∀ (
h
:
p
),
0
<
a
h
)
(hb :
∀ (
h
:
¬
p
),
0
<
b
h
)
:
0
<
dite
p
a
b
source
theorem
dite_lt_one
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LT
α
]
(ha :
∀ (
h
:
p
),
a
h
<
1
)
(hb :
∀ (
h
:
¬
p
),
b
h
<
1
)
:
dite
p
a
b
<
1
source
theorem
dite_neg
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a :
p
→
α
}
{b :
¬
p
→
α
}
[
LT
α
]
(ha :
∀ (
h
:
p
),
a
h
<
0
)
(hb :
∀ (
h
:
¬
p
),
b
h
<
0
)
:
dite
p
a
b
<
0
source
theorem
one_le_ite
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LE
α
]
(ha :
1
≤
a
)
(hb :
1
≤
b
)
:
1
≤
if
p
then
a
else
b
source
theorem
ite_nonneg
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LE
α
]
(ha :
0
≤
a
)
(hb :
0
≤
b
)
:
0
≤
if
p
then
a
else
b
source
theorem
ite_le_one
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LE
α
]
(ha :
a
≤
1
)
(hb :
b
≤
1
)
:
(if
p
then
a
else
b
)
≤
1
source
theorem
ite_nonpos
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LE
α
]
(ha :
a
≤
0
)
(hb :
b
≤
0
)
:
(if
p
then
a
else
b
)
≤
0
source
theorem
one_lt_ite
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LT
α
]
(ha :
1
<
a
)
(hb :
1
<
b
)
:
1
<
if
p
then
a
else
b
source
theorem
ite_pos
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LT
α
]
(ha :
0
<
a
)
(hb :
0
<
b
)
:
0
<
if
p
then
a
else
b
source
theorem
ite_lt_one
{α :
Type
u_1}
[
One
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LT
α
]
(ha :
a
<
1
)
(hb :
b
<
1
)
:
(if
p
then
a
else
b
)
<
1
source
theorem
ite_neg
{α :
Type
u_1}
[
Zero
α
]
{p :
Prop
}
[
Decidable
p
]
{a b :
α
}
[
LT
α
]
(ha :
a
<
0
)
(hb :
b
<
0
)
:
(if
p
then
a
else
b
)
<
0