Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Path

Paths in simplicial sets #

A path in a simplicial set X of length n is a directed path comprised of n + 1 0-simplices and n 1-simplices, together with identifications between 0-simplices and the sources and targets of the 1-simplices.

An n-simplex has a maximal path, the spine of the simplex, which is a path of length n.

structure SSet.Path (X : SSet) (n : ) :

A path in a simplicial set X of length n is a directed path of n edges.

Instances For
    theorem SSet.Path.ext {X : SSet} {n : } {x y : X.Path n} (vertex : x.vertex = y.vertex) (arrow : x.arrow = y.arrow) :
    x = y
    def SSet.Path.interval {X : SSet} {n : } (f : X.Path n) (j l : ) (hjl : j + l n) :
    X.Path l

    For j + l ≤ n, a path of length n restricts to a path of length l, namely the subpath spanned by the vertices j ≤ i ≤ j + l and edges j ≤ i < j + l.

    Equations
    • f.interval j l hjl = { vertex := fun (i : Fin (l + 1)) => f.vertex j + i, , arrow := fun (i : Fin l) => f.arrow j + i, , arrow_src := , arrow_tgt := }
    Instances For
      def SSet.spine (X : SSet) (n : ) (Δ : X.obj (Opposite.op (SimplexCategory.mk n))) :
      X.Path n

      The spine of an n-simplex in X is the path of edges of length n formed by traversing through its vertices in order.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem SSet.spine_arrow (X : SSet) (n : ) (Δ : X.obj (Opposite.op (SimplexCategory.mk n))) (i : Fin n) :
        (X.spine n Δ).arrow i = X.map (SimplexCategory.mkOfSucc i).op Δ
        @[simp]
        theorem SSet.spine_vertex (X : SSet) (n : ) (Δ : X.obj (Opposite.op (SimplexCategory.mk n))) (i : Fin (n + 1)) :
        (X.spine n Δ).vertex i = X.map ((SimplexCategory.mk 0).const (SimplexCategory.mk n) i).op Δ
        theorem SSet.spine_map_subinterval (X : SSet) {n : } (j l : ) (hjl : j + l n) (Δ : X.obj (Opposite.op (SimplexCategory.mk n))) :
        X.spine l (X.map (SimplexCategory.subinterval j l ).op Δ) = (X.spine n Δ).interval j l
        theorem SSet.Path.ext' (X : SSet) {n : } {f g : X.Path (n + 1)} (h : ∀ (i : Fin (n + 1)), f.arrow i = g.arrow i) :
        f = g

        Two paths of the same nonzero length are equal if all of their arrows are equal.