Documentation

Mathlib.Analysis.Normed.Affine.AddTorsorBases

Bases in normed affine spaces. #

This file contains results about bases in normed affine spaces.

Main definitions: #

theorem isOpenMap_barycentric_coord {ι : Type u_1} {𝕜 : Type u_2} {E : Type u_3} {P : Type u_4} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MetricSpace P] [NormedAddTorsor E P] [Nontrivial ι] (b : AffineBasis ι 𝕜 P) (i : ι) :
IsOpenMap (b.coord i)
theorem continuous_barycentric_coord {ι : Type u_1} {𝕜 : Type u_2} {E : Type u_3} {P : Type u_4} [NontriviallyNormedField 𝕜] [CompleteSpace 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [MetricSpace P] [NormedAddTorsor E P] [FiniteDimensional 𝕜 E] (b : AffineBasis ι 𝕜 P) (i : ι) :
Continuous (b.coord i)
theorem AffineBasis.interior_convexHull {ι : Type u_1} {E : Type u_2} [Finite ι] [NormedAddCommGroup E] [NormedSpace E] (b : AffineBasis ι E) :
interior ((convexHull ) (Set.range b)) = {x : E | ∀ (i : ι), 0 < (b.coord i) x}

Given a finite-dimensional normed real vector space, the interior of the convex hull of an affine basis is the set of points whose barycentric coordinates are strictly positive with respect to this basis.

TODO Restate this result for affine spaces (instead of vector spaces) once the definition of convexity is generalised to this setting.

theorem IsOpen.exists_between_affineIndependent_span_eq_top {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace V] [MetricSpace P] [NormedAddTorsor V P] {s u : Set P} (hu : IsOpen u) (hsu : s u) (hne : s.Nonempty) (h : AffineIndependent Subtype.val) :

Given a set s of affine-independent points belonging to an open set u, we may extend s to an affine basis, all of whose elements belong to u.

theorem IsOpen.affineSpan_eq_top {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [NormedSpace V] [MetricSpace P] [NormedAddTorsor V P] {u : Set P} (hu : IsOpen u) (hne : u.Nonempty) :

The affine span of a nonempty open set is .