Documentation

Mathlib.CategoryTheory.Category.ULift

Basic API for ULift #

This file contains a very basic API for working with the categorical instance on ULift C where C is a type with a category instance.

  1. CategoryTheory.ULift.upFunctor is the functorial version of the usual ULift.up.
  2. CategoryTheory.ULift.downFunctor is the functorial version of the usual ULift.down.
  3. CategoryTheory.ULift.equivalence is the categorical equivalence between C and ULift C.

ULiftHom #

Given a type C : Type u, ULiftHom.{w} C is just an alias for C. If we have category.{v} C, then ULiftHom.{w} C is endowed with a category instance whose morphisms are obtained by applying ULift.{w} to the morphisms from C.

This is a category equivalent to C. The forward direction of the equivalence is ULiftHom.up, the backward direction is ULiftHom.down and the equivalence is ULiftHom.equiv.

AsSmall #

This file also contains a construction which takes a type C : Type u with a category instance Category.{v} C and makes a small category AsSmall.{w} C : Type (max w v u) equivalent to C.

The forward direction of the equivalence, C ⥤ AsSmall C, is denoted AsSmall.up and the backward direction is AsSmall.down. The equivalence itself is AsSmall.equiv.

The functorial version of ULift.up.

Equations
Instances For
    @[simp]

    The functorial version of ULift.down.

    Equations
    Instances For

      The categorical equivalence between C and ULift C.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        ULiftHom.{w} C is an alias for C, which is endowed with a category instance whose morphisms are obtained by applying ULift.{w} to the morphisms from C.

        Equations
        Instances For

          The obvious function ULiftHom C → C.

          Equations
          • A.objDown = A
          Instances For

            The obvious function C → ULiftHom C.

            Equations
            Instances For
              @[simp]
              theorem CategoryTheory.objDown_objUp {C : Type u_1} (A : C) :

              One half of the quivalence between C and ULiftHom C.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.ULiftHom.up_map_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :

                One half of the quivalence between C and ULiftHom C.

                Equations
                Instances For

                  The equivalence between C and ULiftHom C.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    AsSmall C is a small category equivalent to C. More specifically, if C : Type u is endowed with Category.{v} C, then AsSmall.{w} C : Type (max w v u) is endowed with an instance of a small category.

                    The objects and morphisms of AsSmall C are defined by applying ULift to the objects and morphisms of C.

                    Note: We require a category instance for this definition in order to have direct access to the universe level v.

                    Equations
                    Instances For

                      One half of the equivalence between C and AsSmall C.

                      Equations
                      • CategoryTheory.AsSmall.up = { obj := fun (X : C) => { down := X }, map := fun {X Y : C} (f : X Y) => { down := f }, map_id := , map_comp := }
                      Instances For
                        @[simp]
                        theorem CategoryTheory.AsSmall.up_map_down {C : Type u₁} [CategoryTheory.Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) :

                        One half of the equivalence between C and AsSmall C.

                        Equations
                        Instances For

                          The equivalence between C and AsSmall C.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For