Documentation

Mathlib.CategoryTheory.PUnit

The category Discrete PUnit #

We define star : C ⥤ Discrete PUnit sending everything to PUnit.star, show that any two functors to Discrete PUnit are naturally isomorphic, and construct the equivalence (Discrete PUnit ⥤ C) ≌ C.

@[simp]
theorem CategoryTheory.Functor.star_map_down_down (C : Type u) [CategoryTheory.Category.{v, u} C] {X✝ Y✝ : C} (x✝ : X✝ Y✝) :
=

Any two functors to Discrete PUnit are isomorphic.

Equations
Instances For

    Any two functors to Discrete PUnit are equal. You probably want to use punitExt instead of this.

    @[reducible, inline]

    The functor from Discrete PUnit sending everything to the given object.

    Equations
    Instances For

      Functors from Discrete PUnit are equivalent to the category itself.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        A category being equivalent to PUnit is equivalent to it having a unique morphism between any two objects. (In fact, such a category is also a groupoid; see CategoryTheory.Groupoid.ofHomUnique)