Retracts #
Defines retracts of objects and morphisms.
An object X
is a retract of Y
if there are morphisms i : X ⟶ Y
and r : Y ⟶ X
such
that i ≫ r = 𝟙 X
.
- i : X ⟶ Y
the split monomorphism
- r : Y ⟶ X
the split epimorphism
- retract : CategoryTheory.CategoryStruct.comp self.i self.r = CategoryTheory.CategoryStruct.id X
Instances For
@[simp]
theorem
CategoryTheory.Retract.retract_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(self : CategoryTheory.Retract X Y)
{Z : C}
(h : X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp self.i (CategoryTheory.CategoryStruct.comp self.r h) = h
def
CategoryTheory.Retract.map
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
{X Y : C}
(h : CategoryTheory.Retract X Y)
(F : CategoryTheory.Functor C D)
:
CategoryTheory.Retract (F.obj X) (F.obj Y)
If X
is a retract of Y
, then F.obj X
is a retract of F.obj Y
.
Equations
- h.map F = { i := F.map h.i, r := F.map h.r, retract := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Retract.map_i
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
{X Y : C}
(h : CategoryTheory.Retract X Y)
(F : CategoryTheory.Functor C D)
:
(h.map F).i = F.map h.i
@[simp]
theorem
CategoryTheory.Retract.map_r
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{D : Type u'}
[CategoryTheory.Category.{v', u'} D]
{X Y : C}
(h : CategoryTheory.Retract X Y)
(F : CategoryTheory.Functor C D)
:
(h.map F).r = F.map h.r
def
CategoryTheory.Retract.splitEpi
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
a retract determines a split epimorphism.
Equations
- h.splitEpi = { section_ := h.i, id := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Retract.splitEpi_section_
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
h.splitEpi.section_ = h.i
def
CategoryTheory.Retract.splitMono
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
a retract determines a split monomorphism.
Equations
- h.splitMono = { retraction := h.r, id := ⋯ }
Instances For
@[simp]
theorem
CategoryTheory.Retract.splitMono_retraction
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
h.splitMono.retraction = h.r
instance
CategoryTheory.Retract.instIsSplitEpiR
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
instance
CategoryTheory.Retract.instIsSplitMonoI
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y : C}
(h : CategoryTheory.Retract X Y)
:
@[reducible, inline]
abbrev
CategoryTheory.RetractArrow
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
(f : X ⟶ Y)
(g : Z ⟶ W)
:
Type v
X -------> Z -------> X
| | |
f g f
| | |
v v v
Y -------> W -------> Y
A morphism f : X ⟶ Y
is a retract of g : Z ⟶ W
if there are morphisms i : f ⟶ g
and r : g ⟶ f
in the arrow category such that i ≫ r = 𝟙 f
.
Equations
Instances For
theorem
CategoryTheory.RetractArrow.i_w
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.CategoryStruct.comp h.i.left g = CategoryTheory.CategoryStruct.comp f h.i.right
theorem
CategoryTheory.RetractArrow.i_w_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
{Z✝ : C}
(h✝ : W ⟶ Z✝)
:
CategoryTheory.CategoryStruct.comp h.i.left (CategoryTheory.CategoryStruct.comp g h✝) = CategoryTheory.CategoryStruct.comp f (CategoryTheory.CategoryStruct.comp h.i.right h✝)
theorem
CategoryTheory.RetractArrow.r_w
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.CategoryStruct.comp h.r.left f = CategoryTheory.CategoryStruct.comp g h.r.right
theorem
CategoryTheory.RetractArrow.r_w_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
{Z✝ : C}
(h✝ : Y ⟶ Z✝)
:
CategoryTheory.CategoryStruct.comp h.r.left (CategoryTheory.CategoryStruct.comp f h✝) = CategoryTheory.CategoryStruct.comp g (CategoryTheory.CategoryStruct.comp h.r.right h✝)
def
CategoryTheory.RetractArrow.left
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
The top of a retract diagram of morphisms determines a retract of objects.
Equations
Instances For
@[simp]
theorem
CategoryTheory.RetractArrow.left_i
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
h.left.i = h.i.left
@[simp]
theorem
CategoryTheory.RetractArrow.left_r
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
h.left.r = h.r.left
def
CategoryTheory.RetractArrow.right
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
The bottom of a retract diagram of morphisms determines a retract of objects.
Equations
Instances For
@[simp]
theorem
CategoryTheory.RetractArrow.right_i
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
h.right.i = h.i.right
@[simp]
theorem
CategoryTheory.RetractArrow.right_r
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
h.right.r = h.r.right
@[simp]
theorem
CategoryTheory.RetractArrow.retract_left
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.CategoryStruct.comp h.i.left h.r.left = CategoryTheory.CategoryStruct.id X
@[simp]
theorem
CategoryTheory.RetractArrow.retract_left_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
{Z✝ : C}
(h✝ : (CategoryTheory.Arrow.mk f).left ⟶ Z✝)
:
CategoryTheory.CategoryStruct.comp h.i.left (CategoryTheory.CategoryStruct.comp h.r.left h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id X) h✝
@[simp]
theorem
CategoryTheory.RetractArrow.retract_right
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.CategoryStruct.comp h.i.right h.r.right = CategoryTheory.CategoryStruct.id Y
@[simp]
theorem
CategoryTheory.RetractArrow.retract_right_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
{Z✝ : C}
(h✝ : (CategoryTheory.Arrow.mk f).right ⟶ Z✝)
:
CategoryTheory.CategoryStruct.comp h.i.right (CategoryTheory.CategoryStruct.comp h.r.right h✝) = CategoryTheory.CategoryStruct.comp (CategoryTheory.CategoryStruct.id Y) h✝
instance
CategoryTheory.RetractArrow.instIsSplitEpiLeftRArrow
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.IsSplitEpi h.r.left
instance
CategoryTheory.RetractArrow.instIsSplitEpiRightRArrow
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.IsSplitEpi h.r.right
instance
CategoryTheory.RetractArrow.instIsSplitMonoLeftIArrow
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.IsSplitMono h.i.left
instance
CategoryTheory.RetractArrow.instIsSplitMonoRightIArrow
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{X Y Z W : C}
{f : X ⟶ Y}
{g : Z ⟶ W}
(h : CategoryTheory.RetractArrow f g)
:
CategoryTheory.IsSplitMono h.i.right