Documentation

Mathlib.CategoryTheory.Yoneda

The Yoneda embedding #

The Yoneda embedding as a functor yoneda : C ⥤ (Cᵒᵖ ⥤ Type v₁), along with an instance that it is FullyFaithful.

Also the Yoneda lemma, yonedaLemma : (yoneda_pairing C) ≅ (yoneda_evaluation C).

References #

The Yoneda embedding, as a functor from C into presheaves on C.

Stacks Tag 001O

Equations
  • One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.yoneda_obj_obj {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (Y : Cᵒᵖ) :
@[simp]
theorem CategoryTheory.yoneda_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (X : C) {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (g : Opposite.unop X✝ X) :
@[simp]
theorem CategoryTheory.yoneda_map_app {C : Type u₁} [Category.{v₁, u₁} C] {X✝ Y✝ : C} (f : X✝ Y✝) (x✝ : Cᵒᵖ) (g : { obj := fun (Y : Cᵒᵖ) => Opposite.unop Y X✝, map := fun {X Y : Cᵒᵖ} (f : X Y) (g : Opposite.unop X X✝) => CategoryStruct.comp f.unop g, map_id := , map_comp := }.obj x✝) :

The co-Yoneda embedding, as a functor from Cᵒᵖ into co-presheaves on C.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem CategoryTheory.coyoneda_obj_map {C : Type u₁} [Category.{v₁, u₁} C] (X : Cᵒᵖ) {X✝ Y✝ : C} (f : X✝ Y✝) (g : Opposite.unop X X✝) :
@[simp]
theorem CategoryTheory.coyoneda_map_app {C : Type u₁} [Category.{v₁, u₁} C] {X✝ Y✝ : Cᵒᵖ} (f : X✝ Y✝) (x✝ : C) (g : { obj := fun (Y : C) => Opposite.unop X✝ Y, map := fun {X Y : C} (f : X Y) (g : Opposite.unop X✝ X) => CategoryStruct.comp g f, map_id := , map_comp := }.obj x✝) :
@[simp]
@[simp]
theorem CategoryTheory.Yoneda.naturality {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (α : yoneda.obj X yoneda.obj Y) {Z Z' : C} (f : Z Z') (h : Z' X) :

The Yoneda embedding is fully faithful.

Equations
  • One or more equations did not get rendered due to their size.
def CategoryTheory.Yoneda.ext {C : Type u₁} [Category.{v₁, u₁} C] (X Y : C) (p : {Z : C} → (Z X) → (Z Y)) (q : {Z : C} → (Z Y) → (Z X)) (h₁ : ∀ {Z : C} (f : Z X), q (p f) = f) (h₂ : ∀ {Z : C} (f : Z Y), p (q f) = f) (n : ∀ {Z Z' : C} (f : Z' Z) (g : Z X), p (CategoryStruct.comp f g) = CategoryStruct.comp f (p g)) :
X Y

Extensionality via Yoneda. The typical usage would be

-- Goal is `X ≅ Y`
apply Yoneda.ext
-- Goals are now functions `(Z ⟶ X) → (Z ⟶ Y)`, `(Z ⟶ Y) → (Z ⟶ X)`, and the fact that these
-- functions are inverses and natural in `Z`.
Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Yoneda.isIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) [IsIso (yoneda.map f)] :

If yoneda.map f is an isomorphism, so was f.

@[simp]
theorem CategoryTheory.Coyoneda.naturality {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (α : coyoneda.obj X coyoneda.obj Y) {Z Z' : C} (f : Z' Z) (h : Opposite.unop X Z') :

The co-Yoneda embedding is fully faithful.

Equations
  • One or more equations did not get rendered due to their size.

The morphism X ⟶ Y corresponding to a natural transformation coyoneda.obj X ⟶ coyoneda.obj Y.

Equations
def CategoryTheory.Coyoneda.ext {C : Type u₁} [Category.{v₁, u₁} C] (X Y : C) (p : {Z : C} → (X Z) → (Y Z)) (q : {Z : C} → (Y Z) → (X Z)) (h₁ : ∀ {Z : C} (f : X Z), q (p f) = f) (h₂ : ∀ {Z : C} (f : Y Z), p (q f) = f) (n : ∀ {Z Z' : C} (f : Y Z) (g : Z Z'), q (CategoryStruct.comp f g) = CategoryStruct.comp (q f) g) :
X Y

Extensionality via Coyoneda. The typical usage would be

-- Goal is `X ≅ Y`
apply Coyoneda.ext
-- Goals are now functions `(X ⟶ Z) → (Y ⟶ Z)`, `(Y ⟶ Z) → (X ⟶ Z)`, and the fact that these
-- functions are inverses and natural in `Z`.
Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.Coyoneda.isIso {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} (f : X Y) [IsIso (coyoneda.map f)] :

If coyoneda.map f is an isomorphism, so was f.

The identity functor on Type is isomorphic to the coyoneda functor coming from PUnit.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Coyoneda.objOpOp_inv_app {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (X✝ : Cᵒᵖ) (a✝ : (yoneda.obj X).obj X✝) :
(objOpOp X).inv.app X✝ a✝ = (opEquiv (Opposite.op X) X✝).symm a✝
@[simp]
theorem CategoryTheory.Coyoneda.objOpOp_hom_app {C : Type u₁} [Category.{v₁, u₁} C] (X : C) (X✝ : Cᵒᵖ) (a✝ : (coyoneda.obj (Opposite.op (Opposite.op X))).obj X✝) :
(objOpOp X).hom.app X✝ a✝ = (opEquiv (Opposite.op X) X✝) a✝

Taking the unop of morphisms is a natural isomorphism.

Equations
  • One or more equations did not get rendered due to their size.
structure CategoryTheory.Functor.RepresentableBy {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor Cᵒᵖ (Type v)) (Y : C) :
Type (max (max u₁ v) v₁)

The data which expresses that a functor F : Cᵒᵖ ⥤ Type v is representable by Y : C.

If F ≅ F', and F is representable, then F' is representable.

Equations
structure CategoryTheory.Functor.CorepresentableBy {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) (X : C) :
Type (max (max u₁ v) v₁)

The data which expresses that a functor F : C ⥤ Type v is corepresentable by X : C.

theorem CategoryTheory.Functor.CorepresentableBy.homEquiv_symm_comp {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X : C} (e : F.CorepresentableBy X) {Y Y' : C} (y : F.obj Y) (g : Y Y') :

If F ≅ F', and F is corepresentable, then F' is corepresentable.

Equations

Representing objects are unique up to isomorphism.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor Cᵒᵖ (Type v)} {Y Y' : C} (e : F.RepresentableBy Y) (e' : F.RepresentableBy Y') :
(e.uniqueUpToIso e').hom = Yoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : Cᵒᵖ) => { hom := e'.homEquiv.symm e.homEquiv, inv := (e.homEquiv.trans e'.homEquiv.symm).symm, hom_inv_id := , inv_hom_id := }) ).hom
@[simp]
theorem CategoryTheory.Functor.RepresentableBy.uniqueUpToIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor Cᵒᵖ (Type v)} {Y Y' : C} (e : F.RepresentableBy Y) (e' : F.RepresentableBy Y') :
(e.uniqueUpToIso e').inv = Yoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : Cᵒᵖ) => { hom := e'.homEquiv.symm e.homEquiv, inv := (e.homEquiv.trans e'.homEquiv.symm).symm, hom_inv_id := , inv_hom_id := }) ).inv

Corepresenting objects are unique up to isomorphism.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_inv {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X X' : C} (e : F.CorepresentableBy X) (e' : F.CorepresentableBy X') :
(e.uniqueUpToIso e').inv = (Coyoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : C) => { hom := (e.homEquiv.trans e'.homEquiv.symm).symm, inv := e'.homEquiv.symm e.homEquiv, hom_inv_id := , inv_hom_id := }) ).inv).unop
@[simp]
theorem CategoryTheory.Functor.CorepresentableBy.uniqueUpToIso_hom {C : Type u₁} [Category.{v₁, u₁} C] {F : Functor C (Type v)} {X X' : C} (e : F.CorepresentableBy X) (e' : F.CorepresentableBy X') :
(e.uniqueUpToIso e').hom = (Coyoneda.fullyFaithful.preimage (NatIso.ofComponents (fun (Z : C) => { hom := (e.homEquiv.trans e'.homEquiv.symm).symm, inv := e'.homEquiv.symm e.homEquiv, hom_inv_id := , inv_hom_id := }) ).hom).unop

The obvious bijection F.RepresentableBy Y ≃ (yoneda.obj Y ≅ F) when F : Cᵒᵖ ⥤ Type v₁ and [Category.{v₁} C].

Equations
  • One or more equations did not get rendered due to their size.

The isomorphism yoneda.obj Y ≅ F induced by e : F.RepresentableBy Y.

Equations

The obvious bijection F.CorepresentableBy X ≃ (yoneda.obj Y ≅ F) when F : C ⥤ Type v₁ and [Category.{v₁} C].

Equations
  • One or more equations did not get rendered due to their size.

The isomorphism coyoneda.obj (op X) ≅ F induced by e : F.CorepresentableBy X.

Equations

A functor F : Cᵒᵖ ⥤ Type v is representable if there is an object Y with a structure F.RepresentableBy Y, i.e. there is a natural bijection (X ⟶ Y) ≃ F.obj (op X), which may also be rephrased as a natural isomorphism yoneda.obj X ≅ F when Category.{v} C.

Instances

Alternative constructor for F.IsRepresentable, which takes as an input an isomorphism yoneda.obj X ≅ F.

A functor F : C ⥤ Type v₁ is corepresentable if there is object X so F ≅ coyoneda.obj X.

Instances

Alternative constructor for F.IsCorepresentable, which takes as an input an isomorphism coyoneda.obj (op X) ≅ F.

noncomputable def CategoryTheory.Functor.reprX {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor Cᵒᵖ (Type v)) [hF : F.IsRepresentable] :
C

The representing object for the representable functor F.

Equations

A chosen term in F.RepresentableBy (reprX F) when F.IsRepresentable holds.

Equations

Any representing object for a representable functor F is isomorphic to reprX F.

Equations

The representing element for the representable functor F, sometimes called the universal element of the functor.

Equations

An isomorphism between a representable F and a functor of the form C(-, F.reprX). Note the components F.reprW.app X definitionally have type (X.unop ⟶ F.reprX) ≅ F.obj X.

Equations
noncomputable def CategoryTheory.Functor.coreprX {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) [hF : F.IsCorepresentable] :
C

The representing object for the corepresentable functor F.

Equations

A chosen term in F.CorepresentableBy (coreprX F) when F.IsCorepresentable holds.

Equations

Any corepresenting object for a corepresentable functor F is isomorphic to coreprX F.

Equations
noncomputable def CategoryTheory.Functor.coreprx {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type v)) [hF : F.IsCorepresentable] :

The representing element for the corepresentable functor F, sometimes called the universal element of the functor.

Equations

An isomorphism between a corepresentable F and a functor of the form C(F.corepr X, -). Note the components F.coreprW.app X definitionally have type F.corepr_X ⟶ X ≅ F.obj X.

Equations

We have a type-level equivalence between natural transformations from the yoneda embedding and elements of F.obj X, without any universe switching.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.yonedaEquiv_symm_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor Cᵒᵖ (Type v₁)} (x : F.obj (Opposite.op X)) (Y : Cᵒᵖ) (f : Opposite.unop Y X) :
(yonedaEquiv.symm x).app Y f = F.map f.op x

See also yonedaEquiv_naturality' for a more general version.

Variant of yonedaEquiv_naturality with general g. This is technically strictly more general than yonedaEquiv_naturality, but yonedaEquiv_naturality is sometimes preferable because it can avoid the "motive is not type correct" error.

theorem CategoryTheory.yonedaEquiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F G : Functor Cᵒᵖ (Type v₁)} (α : yoneda.obj X F) (β : F G) :
theorem CategoryTheory.map_yonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {F : Functor Cᵒᵖ (Type v₁)} (f : yoneda.obj X F) (g : Y X) :
F.map g.op (yonedaEquiv f) = f.app (Opposite.op Y) g

See also map_yonedaEquiv' for a more general version.

theorem CategoryTheory.map_yonedaEquiv' {C : Type u₁} [Category.{v₁, u₁} C] {X Y : Cᵒᵖ} {F : Functor Cᵒᵖ (Type v₁)} (f : yoneda.obj (Opposite.unop X) F) (g : X Y) :
F.map g (yonedaEquiv f) = f.app Y g.unop

Variant of map_yonedaEquiv with general g. This is technically strictly more general than map_yonedaEquiv, but map_yonedaEquiv is sometimes preferable because it can avoid the "motive is not type correct" error.

theorem CategoryTheory.hom_ext_yoneda {C : Type u₁} [Category.{v₁, u₁} C] {P Q : Functor Cᵒᵖ (Type v₁)} {f g : P Q} (h : ∀ (X : C) (p : yoneda.obj X P), CategoryStruct.comp p f = CategoryStruct.comp p g) :
f = g

Two morphisms of presheaves of types P ⟶ Q coincide if the precompositions with morphisms yoneda.obj X ⟶ P agree.

The "Yoneda evaluation" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to F.obj X, functorially in both X and F.

Equations
@[simp]
theorem CategoryTheory.yonedaEvaluation_map_down (C : Type u₁) [Category.{v₁, u₁} C] (P Q : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)) (α : P Q) (x : (yonedaEvaluation C).obj P) :
((yonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)

The "Yoneda pairing" functor, which sends X : Cᵒᵖ and F : Cᵒᵖ ⥤ Type to yoneda.op.obj X ⟶ F, functorially in both X and F.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.yonedaPairingExt (C : Type u₁) [Category.{v₁, u₁} C] {X : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)} {x y : (yonedaPairing C).obj X} (w : ∀ (Y : Cᵒᵖ), x.app Y = y.app Y) :
x = y
theorem CategoryTheory.yonedaPairingExt_iff {C : Type u₁} [Category.{v₁, u₁} C] {X : Cᵒᵖ × Functor Cᵒᵖ (Type v₁)} {x y : (yonedaPairing C).obj X} :
x = y ∀ (Y : Cᵒᵖ), x.app Y = y.app Y

A bijection (yoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (op X) which is a variant of yonedaEquiv with heterogeneous universes.

Equations
  • One or more equations did not get rendered due to their size.

The Yoneda lemma asserts that the Yoneda pairing (X : Cᵒᵖ, F : Cᵒᵖ ⥤ Type) ↦ (yoneda.obj (unop X) ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

Stacks Tag 001P

Equations
  • One or more equations did not get rendered due to their size.

The curried version of yoneda lemma when C is small.

Equations
  • One or more equations did not get rendered due to their size.

The curried version of the Yoneda lemma.

Equations
  • One or more equations did not get rendered due to their size.

Version of the Yoneda lemma where the presheaf is fixed but the argument varies.

Equations
  • One or more equations did not get rendered due to their size.

The curried version of yoneda lemma when C is small.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.isIso_of_yoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (hf : ∀ (T : C), Function.Bijective fun (x : T X) => CategoryStruct.comp x f) :
theorem CategoryTheory.isIso_iff_yoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
IsIso f ∀ (T : C), Function.Bijective fun (x : T X) => CategoryStruct.comp x f
theorem CategoryTheory.isIso_iff_isIso_yoneda_map {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
IsIso f ∀ (c : C), IsIso ((yoneda.map f).app (Opposite.op c))
def CategoryTheory.coyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor C (Type v₁)} :

We have a type-level equivalence between natural transformations from the coyoneda embedding and elements of F.obj X.unop, without any universe switching.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.coyonedaEquiv_symm_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F : Functor C (Type v₁)} (x : F.obj X) (Y : C) (f : X Y) :
(coyonedaEquiv.symm x).app Y f = F.map f x
theorem CategoryTheory.coyonedaEquiv_comp {C : Type u₁} [Category.{v₁, u₁} C] {X : C} {F G : Functor C (Type v₁)} (α : coyoneda.obj (Opposite.op X) F) (β : F G) :
theorem CategoryTheory.map_coyonedaEquiv {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} {F : Functor C (Type v₁)} (f : coyoneda.obj (Opposite.op X) F) (g : X Y) :
F.map g (coyonedaEquiv f) = f.app Y g
def CategoryTheory.coyonedaEvaluation (C : Type u₁) [Category.{v₁, u₁} C] :
Functor (C × Functor C (Type v₁)) (Type (max u₁ v₁))

The "Coyoneda evaluation" functor, which sends X : C and F : C ⥤ Type to F.obj X, functorially in both X and F.

Equations
@[simp]
theorem CategoryTheory.coyonedaEvaluation_map_down (C : Type u₁) [Category.{v₁, u₁} C] (P Q : C × Functor C (Type v₁)) (α : P Q) (x : (coyonedaEvaluation C).obj P) :
((coyonedaEvaluation C).map α x).down = α.2.app Q.1 (P.2.map α.1 x.down)
def CategoryTheory.coyonedaPairing (C : Type u₁) [Category.{v₁, u₁} C] :
Functor (C × Functor C (Type v₁)) (Type (max u₁ v₁))

The "Coyoneda pairing" functor, which sends X : C and F : C ⥤ Type to coyoneda.rightOp.obj X ⟶ F, functorially in both X and F.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.coyonedaPairingExt (C : Type u₁) [Category.{v₁, u₁} C] {X : C × Functor C (Type v₁)} {x y : (coyonedaPairing C).obj X} (w : ∀ (Y : C), x.app Y = y.app Y) :
x = y
theorem CategoryTheory.coyonedaPairingExt_iff {C : Type u₁} [Category.{v₁, u₁} C] {X : C × Functor C (Type v₁)} {x y : (coyonedaPairing C).obj X} :
x = y ∀ (Y : C), x.app Y = y.app Y
@[simp]

A bijection (coyoneda.obj X ⋙ uliftFunctor ⟶ F) ≃ F.obj (unop X) which is a variant of coyonedaEquiv with heterogeneous universes.

Equations
  • One or more equations did not get rendered due to their size.

The Coyoneda lemma asserts that the Coyoneda pairing (X : C, F : C ⥤ Type) ↦ (coyoneda.obj X ⟶ F) is naturally isomorphic to the evaluation (X, F) ↦ F.obj X.

Stacks Tag 001P

Equations

The curried version of coyoneda lemma when C is small.

Equations
  • One or more equations did not get rendered due to their size.

The curried version of the Coyoneda lemma.

Equations
  • One or more equations did not get rendered due to their size.

Version of the Coyoneda lemma where the presheaf is fixed but the argument varies.

Equations
  • One or more equations did not get rendered due to their size.

The curried version of coyoneda lemma when C is small.

Equations
  • One or more equations did not get rendered due to their size.
theorem CategoryTheory.isIso_of_coyoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) (hf : ∀ (T : C), Function.Bijective fun (x : Y T) => CategoryStruct.comp f x) :
theorem CategoryTheory.isIso_iff_coyoneda_map_bijective {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
IsIso f ∀ (T : C), Function.Bijective fun (x : Y T) => CategoryStruct.comp f x
theorem CategoryTheory.isIso_iff_isIso_coyoneda_map {C : Type u₁} [Category.{v₁, u₁} C] {X Y : C} (f : X Y) :
IsIso f ∀ (c : C), IsIso ((coyoneda.map f.op).app c)
def CategoryTheory.yonedaMap {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u_1} [Category.{v₁, u_1} D] (F : Functor C D) (X : C) :

The natural transformation yoneda.obj X ⟶ F.op ⋙ yoneda.obj (F.obj X) when F : C ⥤ D and X : C.

Equations
@[simp]
theorem CategoryTheory.yonedaMap_app_apply {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u_1} [Category.{v₁, u_1} D] (F : Functor C D) {Y : C} {X : Cᵒᵖ} (f : Opposite.unop X Y) :
(yonedaMap F Y).app X f = F.map f
def CategoryTheory.Functor.sectionsEquivHom {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type u₂)) (X : Type u₂) [Unique X] :
F.sections ((const C).obj X F)

A type-level equivalence between sections of a functor and morphisms from a terminal functor to it. We use the constant functor on a given singleton type here as a specific choice of terminal functor.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem CategoryTheory.Functor.sectionsEquivHom_apply_app {C : Type u₁} [Category.{v₁, u₁} C] (F : Functor C (Type u₂)) (X : Type u₂) [Unique X] (s : F.sections) (j : C) (x : ((const C).obj X).obj j) :
((F.sectionsEquivHom X) s).app j x = s j

A natural isomorphism between the sections functor (C ⥤ Type _) ⥤ Type _ and the co-Yoneda embedding of a terminal functor, specifically a constant functor on a given singleton type X.

Equations
@[simp]
theorem CategoryTheory.sectionsFunctorNatIsoCoyoneda_hom_app_app {C : Type u₁} [Category.{v₁, u₁} C] (X : Type (max u₁ u₂)) [Unique X] (X✝ : Functor C (Type (max u₁ u₂))) (a✝ : (Functor.sectionsFunctor C).obj X✝) (j : C) (x : ((Functor.const C).obj X).obj j) :
((sectionsFunctorNatIsoCoyoneda X).hom.app X✝ a✝).app j x = a✝ j
@[simp]
theorem CategoryTheory.sectionsFunctorNatIsoCoyoneda_inv_app_coe {C : Type u₁} [Category.{v₁, u₁} C] (X : Type (max u₁ u₂)) [Unique X] (X✝ : Functor C (Type (max u₁ u₂))) (a✝ : (coyoneda.obj (Opposite.op ((Functor.const C).obj X))).obj X✝) (j : C) :
((sectionsFunctorNatIsoCoyoneda X).inv.app X✝ a✝) j = a✝.app j default
@[simp]
theorem CategoryTheory.Functor.FullyFaithful.homNatIso_hom_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp ((yoneda.obj (F.obj X)).comp uliftFunctor.{v₁, v₂})).obj X✝) :
((hF.homNatIso X).hom.app X✝ a✝).down = hF.preimage a✝.down
@[simp]
theorem CategoryTheory.Functor.FullyFaithful.homNatIso_inv_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : ((yoneda.obj X).comp uliftFunctor.{v₂, v₁}).obj X✝) :
((hF.homNatIso X).inv.app X✝ a✝).down = F.map a✝.down
@[simp]
theorem CategoryTheory.Functor.FullyFaithful.homNatIsoMaxRight_hom_app_down {C : Type u₁} [Category.{v₁, u₁} C] {D : Type u₂} [Category.{max v₁ v₂, u₂} D] {F : Functor C D} (hF : F.FullyFaithful) (X : C) (X✝ : Cᵒᵖ) (a✝ : (F.op.comp (yoneda.obj (F.obj X))).obj X✝) :
((hF.homNatIsoMaxRight X).hom.app X✝ a✝).down = hF.preimage a✝