Group actions on DFinsupp
#
Main results #
DFinsupp.module
: pointwise scalar multiplication onDFinsupp
gives a module structure
instance
DFinsupp.instSMulOfDistribMulAction
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
:
SMul γ (Π₀ (i : ι), β i)
Dependent functions with finite support inherit a semiring action from an action on each coordinate.
Equations
- DFinsupp.instSMulOfDistribMulAction = { smul := fun (c : γ) (v : Π₀ (i : ι), β i) => DFinsupp.mapRange (fun (x : ι) (x_1 : β x) => c • x_1) ⋯ v }
instance
DFinsupp.smulCommClass
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
{δ : Type u_1}
[Monoid γ]
[Monoid δ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
[(i : ι) → DistribMulAction δ (β i)]
[∀ (i : ι), SMulCommClass γ δ (β i)]
:
SMulCommClass γ δ (Π₀ (i : ι), β i)
instance
DFinsupp.isScalarTower
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
{δ : Type u_1}
[Monoid γ]
[Monoid δ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
[(i : ι) → DistribMulAction δ (β i)]
[SMul γ δ]
[∀ (i : ι), IsScalarTower γ δ (β i)]
:
IsScalarTower γ δ (Π₀ (i : ι), β i)
instance
DFinsupp.isCentralScalar
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
[(i : ι) → DistribMulAction γᵐᵒᵖ (β i)]
[∀ (i : ι), IsCentralScalar γ (β i)]
:
IsCentralScalar γ (Π₀ (i : ι), β i)
instance
DFinsupp.distribMulAction
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
:
DistribMulAction γ (Π₀ (i : ι), β i)
Dependent functions with finite support inherit a DistribMulAction
structure from such a
structure on each coordinate.
instance
DFinsupp.module
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
:
Module γ (Π₀ (i : ι), β i)
Dependent functions with finite support inherit a module structure from such a structure on each coordinate.
Equations
@[simp]
theorem
DFinsupp.filter_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
(p : ι → Prop)
[DecidablePred p]
(r : γ)
(f : Π₀ (i : ι), β i)
:
DFinsupp.filter p (r • f) = r • DFinsupp.filter p f
def
DFinsupp.filterLinearMap
{ι : Type u}
(γ : Type w)
(β : ι → Type v)
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
(p : ι → Prop)
[DecidablePred p]
:
DFinsupp.filter
as a LinearMap
.
Equations
- DFinsupp.filterLinearMap γ β p = { toFun := DFinsupp.filter p, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
DFinsupp.filterLinearMap_apply
{ι : Type u}
(γ : Type w)
(β : ι → Type v)
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
(p : ι → Prop)
[DecidablePred p]
(x : Π₀ (i : ι), β i)
:
(DFinsupp.filterLinearMap γ β p) x = DFinsupp.filter p x
@[simp]
theorem
DFinsupp.subtypeDomain_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
{p : ι → Prop}
[DecidablePred p]
(r : γ)
(f : Π₀ (i : ι), β i)
:
DFinsupp.subtypeDomain p (r • f) = r • DFinsupp.subtypeDomain p f
def
DFinsupp.subtypeDomainLinearMap
{ι : Type u}
(γ : Type w)
(β : ι → Type v)
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
(p : ι → Prop)
[DecidablePred p]
:
DFinsupp.subtypeDomain
as a LinearMap
.
Equations
- DFinsupp.subtypeDomainLinearMap γ β p = { toFun := DFinsupp.subtypeDomain p, map_add' := ⋯, map_smul' := ⋯ }
Instances For
@[simp]
theorem
DFinsupp.subtypeDomainLinearMap_apply
{ι : Type u}
(γ : Type w)
(β : ι → Type v)
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
(p : ι → Prop)
[DecidablePred p]
(x : Π₀ (i : ι), β i)
:
(DFinsupp.subtypeDomainLinearMap γ β p) x = DFinsupp.subtypeDomain p x
@[simp]
theorem
DFinsupp.mk_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[DecidableEq ι]
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
{s : Finset ι}
(c : γ)
(x : (i : ↑↑s) → β ↑i)
:
DFinsupp.mk s (c • x) = c • DFinsupp.mk s x
@[simp]
theorem
DFinsupp.single_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
[DecidableEq ι]
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
{i : ι}
(c : γ)
(x : β i)
:
DFinsupp.single i (c • x) = c • DFinsupp.single i x
theorem
DFinsupp.support_smul
{ι : Type u}
{β : ι → Type v}
[DecidableEq ι]
{γ : Type w}
[Semiring γ]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Module γ (β i)]
[(i : ι) → (x : β i) → Decidable (x ≠ 0)]
(b : γ)
(v : Π₀ (i : ι), β i)
:
@[simp]
theorem
DFinsupp.comapDomain_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
{κ : Type u_1}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
(h : κ → ι)
(hh : Function.Injective h)
(r : γ)
(f : Π₀ (i : ι), β i)
:
DFinsupp.comapDomain h hh (r • f) = r • DFinsupp.comapDomain h hh f
@[simp]
theorem
DFinsupp.comapDomain'_smul
{ι : Type u}
{γ : Type w}
{β : ι → Type v}
{κ : Type u_1}
[Monoid γ]
[(i : ι) → AddMonoid (β i)]
[(i : ι) → DistribMulAction γ (β i)]
(h : κ → ι)
{h' : ι → κ}
(hh' : Function.LeftInverse h' h)
(r : γ)
(f : Π₀ (i : ι), β i)
:
DFinsupp.comapDomain' h hh' (r • f) = r • DFinsupp.comapDomain' h hh' f
instance
DFinsupp.distribMulAction₂
{ι : Type u}
{γ : Type w}
{α : ι → Type u_2}
{δ : (i : ι) → α i → Type v}
[Monoid γ]
[(i : ι) → (j : α i) → AddMonoid (δ i j)]
[(i : ι) → (j : α i) → DistribMulAction γ (δ i j)]
:
DistribMulAction γ (Π₀ (i : ι) (j : α i), δ i j)