Documentation

Mathlib.Data.Finset.SDiff

Difference of finite sets #

Main declarations #

Tags #

finite sets, finset

sdiff #

instance Finset.instSDiff {α : Type u_1} [DecidableEq α] :

s \ t is the set consisting of the elements of s that are not in t.

Equations
@[simp]
theorem Finset.sdiff_val {α : Type u_1} [DecidableEq α] (s₁ s₂ : Finset α) :
(s₁ \ s₂).val = s₁.val - s₂.val
@[simp]
theorem Finset.mem_sdiff {α : Type u_1} [DecidableEq α] {s t : Finset α} {a : α} :
a s \ t a s at
@[simp]
theorem Finset.inter_sdiff_self {α : Type u_1} [DecidableEq α] (s₁ s₂ : Finset α) :
s₁ (s₂ \ s₁) =
theorem Finset.not_mem_sdiff_of_mem_right {α : Type u_1} [DecidableEq α] {s t : Finset α} {a : α} (h : a t) :
as \ t
theorem Finset.not_mem_sdiff_of_not_mem_left {α : Type u_1} [DecidableEq α] {s t : Finset α} {a : α} (h : as) :
as \ t
theorem Finset.union_sdiff_of_subset {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : s t) :
s t \ s = t
theorem Finset.sdiff_union_of_subset {α : Type u_1} [DecidableEq α] {s₁ s₂ : Finset α} (h : s₁ s₂) :
s₂ \ s₁ s₁ = s₂
theorem Finset.inter_sdiff_assoc {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
(s t) \ u = s (t \ u)

See also Finset.sdiff_inter_right_comm.

theorem Finset.sdiff_inter_right_comm {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
s \ t u = (s u) \ t

See also Finset.inter_sdiff_assoc.

theorem Finset.inter_sdiff_left_comm {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
s (t \ u) = t (s \ u)
@[deprecated Finset.inter_sdiff_assoc (since := "2024-05-01")]
theorem Finset.inter_sdiff {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
s (t \ u) = (s t) \ u
@[simp]
theorem Finset.sdiff_inter_self {α : Type u_1} [DecidableEq α] (s₁ s₂ : Finset α) :
s₂ \ s₁ s₁ =
theorem Finset.sdiff_self {α : Type u_1} [DecidableEq α] (s₁ : Finset α) :
s₁ \ s₁ =
theorem Finset.sdiff_inter_distrib_right {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
s \ (t u) = s \ t s \ u
@[simp]
theorem Finset.sdiff_inter_self_left {α : Type u_1} [DecidableEq α] (s t : Finset α) :
s \ (s t) = s \ t
@[simp]
theorem Finset.sdiff_inter_self_right {α : Type u_1} [DecidableEq α] (s t : Finset α) :
s \ (t s) = s \ t
@[simp]
theorem Finset.sdiff_empty {α : Type u_1} [DecidableEq α] {s : Finset α} :
s \ = s
theorem Finset.sdiff_subset_sdiff {α : Type u_1} [DecidableEq α] {s t u v : Finset α} (hst : s t) (hvu : v u) :
s \ u t \ v
theorem Finset.sdiff_subset_sdiff_iff_subset {α : Type u_1} [DecidableEq α] {s t r : Finset α} (hs : s r) (ht : t r) :
r \ s r \ t t s
@[simp]
theorem Finset.coe_sdiff {α : Type u_1} [DecidableEq α] (s₁ s₂ : Finset α) :
(s₁ \ s₂) = s₁ \ s₂
@[simp]
theorem Finset.union_sdiff_self_eq_union {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s t \ s = s t
@[simp]
theorem Finset.sdiff_union_self_eq_union {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t t = s t
theorem Finset.union_sdiff_left {α : Type u_1} [DecidableEq α] (s t : Finset α) :
(s t) \ s = t \ s
theorem Finset.union_sdiff_right {α : Type u_1} [DecidableEq α] (s t : Finset α) :
(s t) \ t = s \ t
theorem Finset.union_sdiff_cancel_left {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : Disjoint s t) :
(s t) \ s = t
theorem Finset.union_sdiff_cancel_right {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : Disjoint s t) :
(s t) \ t = s
theorem Finset.union_sdiff_symm {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s t \ s = t s \ t
theorem Finset.sdiff_union_inter {α : Type u_1} [DecidableEq α] (s t : Finset α) :
s \ t s t = s
theorem Finset.sdiff_idem {α : Type u_1} [DecidableEq α] (s t : Finset α) :
(s \ t) \ t = s \ t
theorem Finset.subset_sdiff {α : Type u_1} [DecidableEq α] {s t u : Finset α} :
s t \ u s t Disjoint s u
@[simp]
theorem Finset.sdiff_eq_empty_iff_subset {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t = s t
theorem Finset.sdiff_nonempty {α : Type u_1} [DecidableEq α] {s t : Finset α} :
(s \ t).Nonempty ¬s t
@[simp]
theorem Finset.empty_sdiff {α : Type u_1} [DecidableEq α] (s : Finset α) :
theorem Finset.insert_sdiff_of_not_mem {α : Type u_1} [DecidableEq α] (s : Finset α) {t : Finset α} {x : α} (h : xt) :
insert x s \ t = insert x (s \ t)
theorem Finset.insert_sdiff_of_mem {α : Type u_1} [DecidableEq α] {t : Finset α} (s : Finset α) {x : α} (h : x t) :
insert x s \ t = s \ t
@[simp]
theorem Finset.insert_sdiff_cancel {α : Type u_1} [DecidableEq α] {s : Finset α} {a : α} (ha : as) :
insert a s \ s = {a}
@[simp]
theorem Finset.insert_sdiff_insert {α : Type u_1} [DecidableEq α] (s t : Finset α) (x : α) :
insert x s \ insert x t = s \ insert x t
theorem Finset.insert_sdiff_insert' {α : Type u_1} [DecidableEq α] {s : Finset α} {a b : α} (hab : a b) (ha : as) :
insert a s \ insert b s = {a}
theorem Finset.cons_sdiff_cons {α : Type u_1} [DecidableEq α] {s : Finset α} {a b : α} (hab : a b) (ha : as) (hb : bs) :
Finset.cons a s ha \ Finset.cons b s hb = {a}
theorem Finset.sdiff_insert_of_not_mem {α : Type u_1} [DecidableEq α] {s : Finset α} {x : α} (h : xs) (t : Finset α) :
s \ insert x t = s \ t
@[simp]
theorem Finset.sdiff_subset {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t s
theorem Finset.sdiff_ssubset {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : t s) (ht : t.Nonempty) :
s \ t s
theorem Finset.union_sdiff_distrib {α : Type u_1} [DecidableEq α] (s₁ s₂ t : Finset α) :
(s₁ s₂) \ t = s₁ \ t s₂ \ t
theorem Finset.sdiff_union_distrib {α : Type u_1} [DecidableEq α] (s t₁ t₂ : Finset α) :
s \ (t₁ t₂) = s \ t₁ (s \ t₂)
theorem Finset.union_sdiff_self {α : Type u_1} [DecidableEq α] (s t : Finset α) :
(s t) \ t = s \ t
theorem Finset.Nontrivial.sdiff_singleton_nonempty {α : Type u_1} [DecidableEq α] {c : α} {s : Finset α} (hS : s.Nontrivial) :
(s \ {c}).Nonempty
theorem Finset.sdiff_sdiff_left' {α : Type u_1} [DecidableEq α] (s t u : Finset α) :
(s \ t) \ u = s \ t (s \ u)
theorem Finset.sdiff_union_sdiff_cancel {α : Type u_1} [DecidableEq α] {s t u : Finset α} (hts : t s) (hut : u t) :
s \ t t \ u = s \ u
theorem Finset.sdiff_sdiff_eq_sdiff_union {α : Type u_1} [DecidableEq α] {s t u : Finset α} (h : u s) :
s \ (t \ u) = s \ t u
theorem Finset.sdiff_sdiff_self_left {α : Type u_1} [DecidableEq α] (s t : Finset α) :
s \ (s \ t) = s t
theorem Finset.sdiff_sdiff_eq_self {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : t s) :
s \ (s \ t) = t
theorem Finset.sdiff_eq_sdiff_iff_inter_eq_inter {α : Type u_1} [DecidableEq α] {s t₁ t₂ : Finset α} :
s \ t₁ = s \ t₂ s t₁ = s t₂
theorem Finset.union_eq_sdiff_union_sdiff_union_inter {α : Type u_1} [DecidableEq α] (s t : Finset α) :
s t = s \ t t \ s s t
theorem Finset.sdiff_eq_self_iff_disjoint {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t = s Disjoint s t
@[deprecated Finset.sdiff_eq_self_iff_disjoint (since := "2024-10-01")]
theorem Finset.sdiff_eq_self {α : Type u_1} [DecidableEq α] {s t : Finset α} :
s \ t = s Disjoint s t

Alias of Finset.sdiff_eq_self_iff_disjoint.

theorem Finset.sdiff_eq_self_of_disjoint {α : Type u_1} [DecidableEq α] {s t : Finset α} (h : Disjoint s t) :
s \ t = s