The Finsupp
counterpart of Multiset.antidiagonal
. #
The antidiagonal of s : α →₀ ℕ
consists of
all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
The Finsupp
counterpart of Multiset.antidiagonal
: the antidiagonal of
s : α →₀ ℕ
consists of all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
The finitely supported function antidiagonal s
is equal to the multiplicities of these pairs.
Equations
- f.antidiagonal' = Multiset.toFinsupp (Multiset.map (Prod.map ⇑Multiset.toFinsupp ⇑Multiset.toFinsupp) (Finsupp.toMultiset f).antidiagonal)
Instances For
The antidiagonal of s : α →₀ ℕ
is the finset of all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
Equations
- Finsupp.instHasAntidiagonal = { antidiagonal := fun (f : α →₀ ℕ) => f.antidiagonal'.support, mem_antidiagonal := ⋯ }
@[simp]
theorem
Finsupp.prod_antidiagonal_swap
{α : Type u}
[DecidableEq α]
{M : Type u_1}
[CommMonoid M]
(n : α →₀ ℕ)
(f : (α →₀ ℕ) → (α →₀ ℕ) → M)
:
∏ p ∈ Finset.antidiagonal n, f p.1 p.2 = ∏ p ∈ Finset.antidiagonal n, f p.2 p.1
theorem
Finsupp.sum_antidiagonal_swap
{α : Type u}
[DecidableEq α]
{M : Type u_1}
[AddCommMonoid M]
(n : α →₀ ℕ)
(f : (α →₀ ℕ) → (α →₀ ℕ) → M)
:
∑ p ∈ Finset.antidiagonal n, f p.1 p.2 = ∑ p ∈ Finset.antidiagonal n, f p.2 p.1
@[simp]
theorem
Finsupp.antidiagonal_single
{α : Type u}
[DecidableEq α]
(a : α)
(n : ℕ)
:
Finset.antidiagonal (Finsupp.single a n) = Finset.map ({ toFun := Finsupp.single a, inj' := ⋯ }.prodMap { toFun := Finsupp.single a, inj' := ⋯ })
(Finset.antidiagonal n)