fintype instance for the product of two fintypes. #
theorem
Set.toFinset_off_diag
{α : Type u_1}
{s : Set α}
[DecidableEq α]
[Fintype ↑s]
[Fintype ↑s.offDiag]
:
s.offDiag.toFinset = s.toFinset.offDiag
Equations
- instFintypeProd α β = { elems := Finset.univ ×ˢ Finset.univ, complete := ⋯ }
@[simp]
@[simp]
theorem
Finset.product_eq_univ
{α : Type u_1}
{β : Type u_2}
[Fintype α]
[Fintype β]
{s : Finset α}
{t : Finset β}
[Nonempty α]
[Nonempty β]
:
s ×ˢ t = Finset.univ ↔ s = Finset.univ ∧ t = Finset.univ
@[simp]
theorem
Fintype.card_prod
(α : Type u_4)
(β : Type u_5)
[Fintype α]
[Fintype β]
:
Fintype.card (α × β) = Fintype.card α * Fintype.card β
instance
Pi.infinite_of_left
{ι : Sort u_4}
{π : ι → Type u_5}
[∀ (i : ι), Nontrivial (π i)]
[Infinite ι]
:
Infinite ((i : ι) → π i)
instance
Pi.infinite_of_right
{ι : Sort u_4}
{π : ι → Type u_5}
[∀ (i : ι), Infinite (π i)]
[Nonempty ι]
:
Infinite ((i : ι) → π i)
See Pi.infinite_of_exists_right
for the case that only one π i
is infinite.
instance
Function.infinite_of_left
{ι : Sort u_4}
{π : Type u_5}
[Nontrivial π]
[Infinite ι]
:
Infinite (ι → π)
Non-dependent version of Pi.infinite_of_left
.
instance
Function.infinite_of_right
{ι : Sort u_4}
{π : Type u_5}
[Infinite π]
[Nonempty ι]
:
Infinite (ι → π)
Non-dependent version of Pi.infinite_of_exists_right
and Pi.infinite_of_right
.