Documentation

Mathlib.Data.Int.Interval

Finite intervals of integers #

This file proves that is a LocallyFiniteOrder and calculates the cardinality of its intervals as finsets and fintypes.

Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem Int.card_Icc (a b : ) :
(Finset.Icc a b).card = (b + 1 - a).toNat
@[simp]
theorem Int.card_Ico (a b : ) :
(Finset.Ico a b).card = (b - a).toNat
@[simp]
theorem Int.card_Ioc (a b : ) :
(Finset.Ioc a b).card = (b - a).toNat
@[simp]
theorem Int.card_Ioo (a b : ) :
(Finset.Ioo a b).card = (b - a - 1).toNat
@[simp]
theorem Int.card_uIcc (a b : ) :
(Finset.uIcc a b).card = (b - a).natAbs + 1
theorem Int.card_Icc_of_le (a b : ) (h : a b + 1) :
(Finset.Icc a b).card = b + 1 - a
theorem Int.card_Ico_of_le (a b : ) (h : a b) :
(Finset.Ico a b).card = b - a
theorem Int.card_Ioc_of_le (a b : ) (h : a b) :
(Finset.Ioc a b).card = b - a
theorem Int.card_Ioo_of_lt (a b : ) (h : a < b) :
(Finset.Ioo a b).card = b - a - 1
theorem Int.Icc_eq_pair (a : ) :
Finset.Icc a (a + 1) = {a, a + 1}
theorem Int.card_fintype_Icc (a b : ) :
Fintype.card (Set.Icc a b) = (b + 1 - a).toNat
theorem Int.card_fintype_Ico (a b : ) :
Fintype.card (Set.Ico a b) = (b - a).toNat
theorem Int.card_fintype_Ioc (a b : ) :
Fintype.card (Set.Ioc a b) = (b - a).toNat
theorem Int.card_fintype_Ioo (a b : ) :
Fintype.card (Set.Ioo a b) = (b - a - 1).toNat
theorem Int.card_fintype_uIcc (a b : ) :
Fintype.card (Set.uIcc a b) = (b - a).natAbs + 1
theorem Int.card_fintype_Icc_of_le (a b : ) (h : a b + 1) :
(Fintype.card (Set.Icc a b)) = b + 1 - a
theorem Int.card_fintype_Ico_of_le (a b : ) (h : a b) :
(Fintype.card (Set.Ico a b)) = b - a
theorem Int.card_fintype_Ioc_of_le (a b : ) (h : a b) :
(Fintype.card (Set.Ioc a b)) = b - a
theorem Int.card_fintype_Ioo_of_lt (a b : ) (h : a < b) :
(Fintype.card (Set.Ioo a b)) = b - a - 1
theorem Int.image_Ico_emod (n a : ) (h : 0 a) :
Finset.image (fun (x : ) => x % a) (Finset.Ico n (n + a)) = Finset.Ico 0 a