Congruences modulo a natural number #
This file defines the equivalence relation a ≡ b [MOD n]
on the natural numbers,
and proves basic properties about it such as the Chinese Remainder Theorem
modEq_and_modEq_iff_modEq_mul
.
Notations #
a ≡ b [MOD n]
is notation for nat.ModEq n a b
, which is defined to mean a % n = b % n
.
Tags #
ModEq, congruence, mod, MOD, modulo
Modular equality. n.ModEq a b
, or a ≡ b [MOD n]
, means that a - b
is a multiple of n
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- Nat.instDecidableModEq = inferInstanceAs (Decidable (a % n = b % n))
Equations
- Nat.ModEq.instTrans = { trans := ⋯ }
Alias of the forward direction of Nat.modEq_iff_dvd
.
Alias of the reverse direction of Nat.modEq_iff_dvd
.
The natural number less than n*m
congruent to a
mod n
and b
mod m
Equations
- Nat.chineseRemainder co a b = Nat.chineseRemainder' ⋯
Instances For
theorem
Nat.chineseRemainder'_lt_lcm
{m n a b : ℕ}
(h : a ≡ b [MOD n.gcd m])
(hn : n ≠ 0)
(hm : m ≠ 0)
:
↑(Nat.chineseRemainder' h) < n.lcm m
theorem
Nat.chineseRemainder_lt_mul
{m n : ℕ}
(co : n.Coprime m)
(a b : ℕ)
(hn : n ≠ 0)
(hm : m ≠ 0)
:
↑(Nat.chineseRemainder co a b) < n * m