Documentation

Mathlib.Data.Set.Finite.Lemmas

Lemmas on finiteness of sets #

This file should contain lemmas that prove some result under the assumption of Set.Finite. If your proof has as result Set.Finite, then it should go to a more specific file.

Tags #

finite sets

Properties #

theorem Set.Finite.fin_embedding {α : Type u} {s : Set α} (h : s.Finite) :
∃ (n : ) (f : Fin n α), Set.range f = s
theorem Set.Finite.fin_param {α : Type u} {s : Set α} (h : s.Finite) :
∃ (n : ) (f : Fin nα), Function.Injective f Set.range f = s
theorem Set.Finite.induction_to {α : Type u} {C : Set αProp} {S : Set α} (h : S.Finite) (S0 : Set α) (hS0 : S0 S) (H0 : C S0) (H1 : sS, C saS \ s, C (insert a s)) :
C S

Induction up to a finite set S.

theorem Set.Finite.induction_to_univ {α : Type u} [Finite α] {C : Set αProp} (S0 : Set α) (H0 : C S0) (H1 : ∀ (S : Set α), S Set.univC SaS, C (insert a S)) :

Induction up to univ.

Infinite sets #

Order properties #

theorem Set.exists_min_image {α : Type u} {β : Type v} [LinearOrder β] (s : Set α) (f : αβ) (h1 : s.Finite) :
s.Nonemptyas, bs, f a f b
theorem Set.exists_max_image {α : Type u} {β : Type v} [LinearOrder β] (s : Set α) (f : αβ) (h1 : s.Finite) :
s.Nonemptyas, bs, f b f a
theorem Set.exists_lower_bound_image {α : Type u} {β : Type v} [Nonempty α] [LinearOrder β] (s : Set α) (f : αβ) (h : s.Finite) :
∃ (a : α), bs, f a f b
theorem Set.exists_upper_bound_image {α : Type u} {β : Type v} [Nonempty α] [LinearOrder β] (s : Set α) (f : αβ) (h : s.Finite) :
∃ (a : α), bs, f b f a