Documentation

Mathlib.Data.Set.Subset

Sets in subtypes #

This file is about sets in Set A when A is a set.

It defines notation ↓∩ for sets in a type pulled down to sets in a subtype, as an inverse operation to the coercion that lifts sets in a subtype up to sets in the ambient type.

This module also provides lemmas for ↓∩ and this coercion.

Notation #

Let α be a Type, A B : Set α two sets in α, and C : Set A a set in the subtype ↑A.

This notation, (together with the notation for Set.CoeHead) is defined in Mathlib.Data.Set.Notation and is scoped to the Set.Notation namespace. To enable it, use open Set.Notation.

Naming conventions #

Theorem names refer to ↓∩ as preimage_val.

Tags #

subsets

theorem Set.preimage_val_sUnion {α : Type u_2} {A : Set α} {S : Set (Set α)} :
Subtype.val ⁻¹' ⋃₀ S = ⋃₀ {x : Set A | BS, Subtype.val ⁻¹' B = x}
@[simp]
theorem Set.preimage_val_iInter {ι : Sort u_1} {α : Type u_2} {A : Set α} {s : ιSet α} :
Subtype.val ⁻¹' ⋂ (i : ι), s i = ⋂ (i : ι), Subtype.val ⁻¹' s i
theorem Set.preimage_val_sInter {α : Type u_2} {A : Set α} {S : Set (Set α)} :
Subtype.val ⁻¹' ⋂₀ S = ⋂₀ {x : Set A | BS, Subtype.val ⁻¹' B = x}
theorem Set.preimage_val_sInter_eq_sInter {α : Type u_2} {A : Set α} {S : Set (Set α)} :
theorem Set.eq_of_preimage_val_eq_of_subset {α : Type u_2} {A B C : Set α} (hB : B A) (hC : C A) (h : Subtype.val ⁻¹' B = Subtype.val ⁻¹' C) :
B = C

The following simp lemmas try to transform operations in the subtype into operations in the ambient type, if possible.

@[simp]
theorem Set.image_val_union {α : Type u_2} {A : Set α} {D E : Set A} :
@[simp]
theorem Set.image_val_inter {α : Type u_2} {A : Set α} {D E : Set A} :
@[simp]
theorem Set.image_val_diff {α : Type u_2} {A : Set α} {D E : Set A} :
@[simp]
theorem Set.image_val_compl {α : Type u_2} {A : Set α} {D : Set A} :
@[simp]
theorem Set.image_val_sUnion {α : Type u_2} {A : Set α} {T : Set (Set A)} :
Subtype.val '' ⋃₀ T = ⋃₀ {x : Set α | BT, Subtype.val '' B = x}
@[simp]
theorem Set.image_val_iUnion {ι : Sort u_1} {α : Type u_2} {A : Set α} {t : ιSet A} :
Subtype.val '' ⋃ (i : ι), t i = ⋃ (i : ι), Subtype.val '' t i
@[simp]
theorem Set.image_val_sInter {α : Type u_2} {A : Set α} {T : Set (Set A)} (hT : T.Nonempty) :
Subtype.val '' ⋂₀ T = ⋂₀ {x : Set α | BT, Subtype.val '' B = x}
@[simp]
theorem Set.image_val_iInter {ι : Sort u_1} {α : Type u_2} {A : Set α} {t : ιSet A} [Nonempty ι] :
Subtype.val '' ⋂ (i : ι), t i = ⋂ (i : ι), Subtype.val '' t i
@[simp]
theorem Set.image_val_union_self_right_eq {α : Type u_2} {A : Set α} {D : Set A} :
@[simp]
theorem Set.image_val_union_self_left_eq {α : Type u_2} {A : Set α} {D : Set A} :
@[simp]
theorem Set.image_val_inter_self_right_eq_coe {α : Type u_2} {A : Set α} {D : Set A} :
@[deprecated Set.image_val_inter_self_right_eq_coe (since := "2024-10-25")]
theorem Set.cou_inter_self_right_eq_coe {α : Type u_2} {A : Set α} {D : Set A} :

Alias of Set.image_val_inter_self_right_eq_coe.

@[simp]
theorem Set.image_val_inter_self_left_eq_coe {α : Type u_2} {A : Set α} {D : Set A} :
theorem Set.subset_preimage_val_image_val_iff {α : Type u_2} {A : Set α} {D E : Set A} :
@[simp]
theorem Set.image_val_inj {α : Type u_2} {A : Set α} {D E : Set A} :
theorem Set.subset_of_image_val_subset_image_val {α : Type u_2} {A : Set α} {D E : Set A} (h : Subtype.val '' D Subtype.val '' E) :
D E
theorem Set.image_val_mono {α : Type u_2} {A : Set α} {D E : Set A} (h : D E) :

Relations between restriction and coercion.

theorem Set.preimage_val_image_val_eq_self {α : Type u_2} {A : Set α} {D : Set A} :