Documentation

Mathlib.FieldTheory.Isaacs

Algebraic extensions are determined by their sets of minimal polynomials up to isomorphism #

Main results #

Field.nonempty_algHom_of_exist_roots says if E/F and K/F are field extensions with E/F algebraic, and if the minimal polynomial of every element of E over F has a root in K, then there exists an F-embedding of E into K. If E/F and K/F have the same set of minimal polynomials, then E and K are isomorphic as F-algebras. As a corollary:

IsAlgClosure.of_exist_roots: if E/F is algebraic and every monic irreducible polynomial in F[X] has a root in E, then E is an algebraic closure of F.

Reference #

[Isaacs1980] Roots of Polynomials in Algebraic Extensions of Fields, The American Mathematical Monthly

theorem Field.nonempty_algHom_of_exist_roots {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] (h : ∀ (x : E), ∃ (y : K), (Polynomial.aeval y) (minpoly F x) = 0) :
theorem Field.nonempty_algHom_of_minpoly_eq {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] (h : ∀ (x : E), ∃ (y : K), minpoly F x = minpoly F y) :
theorem Field.nonempty_algHom_of_range_minpoly_subset {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] (h : Set.range (minpoly F) Set.range (minpoly F)) :
theorem Field.nonempty_algEquiv_of_range_minpoly_eq {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] (h : Set.range (minpoly F) = Set.range (minpoly F)) :
theorem Field.nonempty_algHom_of_aeval_eq_zero_subset {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] (h : {p : Polynomial F | ∃ (x : E), (Polynomial.aeval x) p = 0} {p : Polynomial F | ∃ (y : K), (Polynomial.aeval y) p = 0}) :
theorem Field.nonempty_algEquiv_of_aeval_eq_zero_eq {F : Type u_1} {E : Type u_2} {K : Type u_3} [Field F] [Field E] [Field K] [Algebra F E] [Algebra F K] [alg : Algebra.IsAlgebraic F E] [Algebra.IsAlgebraic F K] (h : {p : Polynomial F | ∃ (x : E), (Polynomial.aeval x) p = 0} = {p : Polynomial F | ∃ (y : K), (Polynomial.aeval y) p = 0}) :
theorem IsAlgClosure.of_exist_roots {F : Type u_1} {E : Type u_2} [Field F] [Field E] [Algebra F E] [alg : Algebra.IsAlgebraic F E] (h : ∀ (p : Polynomial F), p.MonicIrreducible p∃ (x : E), (Polynomial.aeval x) p = 0) :