Lagrange's theorem: the order of a subgroup divides the order of the group. #
Subgroup.card_subgroup_dvd_card
: Lagrange's theorem (for multiplicative groups); there is an analogous version for additive groups
theorem
AddSubgroup.card_add_eq_card_addSubgroup_add_card_quotient
{α : Type u_1}
[AddGroup α]
(s : AddSubgroup α)
(t : Set α)
:
Lagrange's Theorem: The order of an additive subgroup divides the order of its ambient additive group.
theorem
AddSubgroup.card_dvd_of_le
{α : Type u_1}
[AddGroup α]
{H K : AddSubgroup α}
(hHK : H ≤ K)
:
theorem
Subgroup.card_comap_dvd_of_injective
{α : Type u_1}
[Group α]
{H : Type u_2}
[Group H]
(K : Subgroup H)
(f : α →* H)
(hf : Function.Injective ⇑f)
:
Nat.card ↥(Subgroup.comap f K) ∣ Nat.card ↥K
theorem
AddSubgroup.card_comap_dvd_of_injective
{α : Type u_1}
[AddGroup α]
{H : Type u_2}
[AddGroup H]
(K : AddSubgroup H)
(f : α →+ H)
(hf : Function.Injective ⇑f)
:
Nat.card ↥(AddSubgroup.comap f K) ∣ Nat.card ↥K