Definition of orbit
, fixedPoints
and stabilizer
#
This file defines orbits, stabilizers, and other objects defined in terms of actions.
Main definitions #
Equations
Equations
The stabilizer of a point a
as an additive submonoid of M
.
Equations
- AddAction.stabilizerAddSubmonoid M a = { carrier := {m : M | m +ᵥ a = a}, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
Equations
Equations
The submonoid of elements fixed under the whole action.
Equations
- FixedPoints.submonoid M α = { carrier := MulAction.fixedPoints M α, mul_mem' := ⋯, one_mem' := ⋯ }
Instances For
The subgroup of elements fixed under the whole action.
Equations
- FixedPoints.subgroup M α = { toSubmonoid := FixedPoints.submonoid M α, inv_mem' := ⋯ }
Instances For
The notation for FixedPoints.subgroup
, chosen to resemble αᴹ
.
Equations
- FixedPoints.«term_^*_» = Lean.ParserDescr.trailingNode `FixedPoints.«term_^*_» 1022 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^*") (Lean.ParserDescr.cat `term 51))
Instances For
The additive submonoid of elements fixed under the whole action.
Equations
- FixedPoints.addSubmonoid M α = { carrier := MulAction.fixedPoints M α, add_mem' := ⋯, zero_mem' := ⋯ }
Instances For
The additive subgroup of elements fixed under the whole action.
Equations
- α^+M = { toAddSubmonoid := FixedPoints.addSubmonoid M α, neg_mem' := ⋯ }
Instances For
The notation for FixedPoints.addSubgroup
, chosen to resemble αᴹ
.
Equations
- «term_^+_» = Lean.ParserDescr.trailingNode `«term_^+_» 1022 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol "^+") (Lean.ParserDescr.cat `term 51))
Instances For
Equations
- MulAction.instMulAction H = inferInstanceAs (MulAction (↥H.toSubmonoid) α)
Equations
- AddAction.instAddAction H = inferInstanceAs (AddAction (↥H.toAddSubmonoid) α)
The relation 'in the same orbit'.
Equations
- MulAction.orbitRel G α = { r := fun (a b : α) => a ∈ MulAction.orbit G b, iseqv := ⋯ }
Instances For
The relation 'in the same orbit'.
Equations
- AddAction.orbitRel G α = { r := fun (a b : α) => a ∈ AddAction.orbit G b, iseqv := ⋯ }
Instances For
Alias of MulAction.orbitRel_apply
.
When you take a set U
in α
, push it down to the quotient, and pull back, you get the union
of the orbit of U
under G
.
When you take a set U
in α
, push it down to the quotient, and pull back, you get the
union of the orbit of U
under G
.
The quotient by MulAction.orbitRel
, given a name to enable dot notation.
Equations
Instances For
The quotient by AddAction.orbitRel
, given a name to enable dot notation.
Equations
Instances For
The orbit corresponding to an element of the quotient by MulAction.orbitRel
Equations
- x.orbit = Quotient.liftOn' x (MulAction.orbit G) ⋯
Instances For
The orbit corresponding to an element of the quotient by AddAction.orbitRel
Equations
- x.orbit = Quotient.liftOn' x (AddAction.orbit G) ⋯
Instances For
Note that hφ = Quotient.out_eq'
is a useful choice here.
Note that hφ = Quotient.out_eq'
is a useful choice here.
Equations
Equations
Decomposition of a type X
as a disjoint union of its orbits under a group action.
This version is expressed in terms of MulAction.orbitRel.Quotient.orbit
instead of
MulAction.orbit
, to avoid mentioning Quotient.out
.
Equations
- MulAction.selfEquivSigmaOrbits' G α = Trans.trans (Equiv.sigmaFiberEquiv Quotient.mk').symm (Equiv.sigmaCongrRight fun (x : MulAction.orbitRel.Quotient G α) => Equiv.subtypeEquivRight ⋯)
Instances For
Decomposition of a type X
as a disjoint union of its orbits under an additive group action.
This version is expressed in terms of AddAction.orbitRel.Quotient.orbit
instead of
AddAction.orbit
, to avoid mentioning Quotient.out
.
Equations
- AddAction.selfEquivSigmaOrbits' G α = Trans.trans (Equiv.sigmaFiberEquiv Quotient.mk').symm (Equiv.sigmaCongrRight fun (x : AddAction.orbitRel.Quotient G α) => Equiv.subtypeEquivRight ⋯)
Instances For
Decomposition of a type X
as a disjoint union of its orbits under a group action.
Equations
- MulAction.selfEquivSigmaOrbits G α = (MulAction.selfEquivSigmaOrbits' G α).trans (Equiv.sigmaCongrRight fun (x : MulAction.orbitRel.Quotient G α) => Equiv.Set.ofEq ⋯)
Instances For
Decomposition of a type X
as a disjoint union of its orbits under an additive group
action.
Equations
- AddAction.selfEquivSigmaOrbits G α = (AddAction.selfEquivSigmaOrbits' G α).trans (Equiv.sigmaCongrRight fun (x : AddAction.orbitRel.Quotient G α) => Equiv.Set.ofEq ⋯)
Instances For
Decomposition of a type X
as a disjoint union of its orbits under a group action.
Phrased as a set union. See MulAction.selfEquivSigmaOrbits
for the type isomorphism.
Decomposition of a type X
as a disjoint union of its orbits under an additive group
action. Phrased as a set union. See AddAction.selfEquivSigmaOrbits
for the type isomorphism.
The stabilizer of an element under an action, i.e. what sends the element to itself. A subgroup.
Equations
- MulAction.stabilizer G a = { toSubmonoid := MulAction.stabilizerSubmonoid G a, inv_mem' := ⋯ }
Instances For
The stabilizer of an element under an action, i.e. what sends the element to itself. An additive subgroup.
Equations
- AddAction.stabilizer G a = { toAddSubmonoid := AddAction.stabilizerAddSubmonoid G a, neg_mem' := ⋯ }