Pointwise actions of equivariant maps #
image_smul_setₛₗ
: under aσ
-equivariant map, one hash '' (c • s) = (σ c) • h '' s
.preimage_smul_setₛₗ'
is a general version of the equalityh ⁻¹' (σ c • s) = c • h⁻¹' s
. It requires thatc
acts surjectively andσ c
acts injectively and is provided with specific versions:preimage_smul_setₛₗ_of_units
whenc
andσ c
are unitspreimage_smul_setₛₗ
whenσ
belongs to aMonoidHomClass
andc
is a unitMonoidHom.preimage_smul_setₛₗ
whenσ
is aMonoidHom
andc
is a unitGroup.preimage_smul_setₛₗ
: when the types ofc
andσ c
are groups.
image_smul_set
,preimage_smul_set
andGroup.preimage_smul_set
are the variants whenσ
is the identity.
theorem
MulAction.smul_bijective_of_is_unit
{M : Type u_1}
[Monoid M]
{α : Type u_2}
[MulAction M α]
{m : M}
(hm : IsUnit m)
:
Function.Bijective fun (a : α) => m • a
theorem
AddAction.vadd_bijective_of_is_addUnit
{M : Type u_1}
[AddMonoid M]
{α : Type u_2}
[AddAction M α]
{m : M}
(hm : IsAddUnit m)
:
Function.Bijective fun (a : α) => m +ᵥ a
theorem
smul_preimage_set_leₛₗ
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[Monoid R]
[Monoid S]
(σ : R → S)
[MulAction R M]
[MulAction S N]
{F : Type u_7}
(h : F)
[FunLike F M N]
[MulActionSemiHomClass F σ M N]
(c : R)
(t : Set N)
:
Translation of preimage is contained in preimage of translation
theorem
preimage_smul_setₛₗ'
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[Monoid R]
[Monoid S]
(σ : R → S)
[MulAction R M]
[MulAction S N]
{F : Type u_7}
(h : F)
[FunLike F M N]
[MulActionSemiHomClass F σ M N]
{c : R}
(t : Set N)
(hc : Function.Surjective fun (m : M) => c • m)
(hc' : Function.Injective fun (n : N) => σ c • n)
:
General version of preimage_smul_setₛₗ
theorem
preimage_vadd_setₛₗ'
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[AddMonoid R]
[AddMonoid S]
(σ : R → S)
[AddAction R M]
[AddAction S N]
{F : Type u_7}
(h : F)
[FunLike F M N]
[AddActionSemiHomClass F σ M N]
{c : R}
(t : Set N)
(hc : Function.Surjective fun (m : M) => c +ᵥ m)
(hc' : Function.Injective fun (n : N) => σ c +ᵥ n)
:
theorem
preimage_smul_setₛₗ_of_units
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[Monoid R]
[Monoid S]
(σ : R → S)
[MulAction R M]
[MulAction S N]
{F : Type u_7}
(h : F)
[FunLike F M N]
[MulActionSemiHomClass F σ M N]
{c : R}
(t : Set N)
(hc : IsUnit c)
(hc' : IsUnit (σ c))
:
preimage_smul_setₛₗ
when both scalars act by unit
theorem
preimage_vadd_setₛₗ_of_addUnits
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[AddMonoid R]
[AddMonoid S]
(σ : R → S)
[AddAction R M]
[AddAction S N]
{F : Type u_7}
(h : F)
[FunLike F M N]
[AddActionSemiHomClass F σ M N]
{c : R}
(t : Set N)
(hc : IsAddUnit c)
(hc' : IsAddUnit (σ c))
:
theorem
MonoidHom.preimage_smul_setₛₗ
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[Monoid R]
[Monoid S]
[MulAction R M]
[MulAction S N]
(σ : R →* S)
{F : Type u_8}
[FunLike F M N]
[MulActionSemiHomClass F (⇑σ) M N]
(h : F)
{c : R}
(hc : IsUnit c)
(t : Set N)
:
preimage_smul_setₛₗ
in the context of a MonoidHom
theorem
preimage_smul_setₛₗ
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[Monoid R]
[Monoid S]
[MulAction R M]
[MulAction S N]
{G : Type u_8}
[FunLike G R S]
[MonoidHomClass G R S]
(σ : G)
{F : Type u_9}
[FunLike F M N]
[MulActionSemiHomClass F (⇑σ) M N]
(h : F)
{c : R}
(hc : IsUnit c)
(t : Set N)
:
preimage_smul_setₛₗ
in the context of a MonoidHomClass
theorem
preimage_vadd_setₛₗ
{R : Type u_1}
{S : Type u_2}
(M : Type u_3)
(N : Type u_6)
[AddMonoid R]
[AddMonoid S]
[AddAction R M]
[AddAction S N]
{G : Type u_8}
[FunLike G R S]
[AddMonoidHomClass G R S]
(σ : G)
{F : Type u_9}
[FunLike F M N]
[AddActionSemiHomClass F (⇑σ) M N]
(h : F)
{c : R}
(hc : IsAddUnit c)
(t : Set N)
:
theorem
Group.preimage_smul_setₛₗ
(M : Type u_3)
(N : Type u_6)
{R : Type u_8}
{S : Type u_9}
[Group R]
[Group S]
(σ : R → S)
[MulAction R M]
[MulAction S N]
{F : Type u_10}
[FunLike F M N]
[MulActionSemiHomClass F σ M N]
(h : F)
(c : R)
(t : Set N)
:
preimage_smul_setₛₗ
in the context of a groups