Documentation

Mathlib.GroupTheory.Subgroup.Centralizer

Centralizers of subgroups #

def Subgroup.centralizer {G : Type u_1} [Group G] (s : Set G) :

The centralizer of s is the subgroup of g : G commuting with every h : s.

Equations
Instances For
    def AddSubgroup.centralizer {G : Type u_1} [AddGroup G] (s : Set G) :

    The centralizer of s is the additive subgroup of g : G commuting with every h : s.

    Equations
    Instances For
      theorem Subgroup.mem_centralizer_iff {G : Type u_1} [Group G] {g : G} {s : Set G} :
      g Subgroup.centralizer s hs, h * g = g * h
      theorem AddSubgroup.mem_centralizer_iff {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
      g AddSubgroup.centralizer s hs, h + g = g + h
      theorem Subgroup.mem_centralizer_iff_commutator_eq_one {G : Type u_1} [Group G] {g : G} {s : Set G} :
      g Subgroup.centralizer s hs, h * g * h⁻¹ * g⁻¹ = 1
      theorem AddSubgroup.mem_centralizer_iff_commutator_eq_zero {G : Type u_1} [AddGroup G] {g : G} {s : Set G} :
      g AddSubgroup.centralizer s hs, h + g + -h + -g = 0
      theorem Subgroup.mem_centralizer_singleton_iff {G : Type u_1} [Group G] {g k : G} :
      instance Subgroup.Centralizer.characteristic {G : Type u_1} [Group G] {H : Subgroup G} [hH : H.Characteristic] :
      (Subgroup.centralizer H).Characteristic
      instance AddSubgroup.Centralizer.characteristic {G : Type u_1} [AddGroup G] {H : AddSubgroup G} [hH : H.Characteristic] :
      (AddSubgroup.centralizer H).Characteristic
      theorem Subgroup.le_centralizer_iff_isCommutative {G : Type u_1} [Group G] {K : Subgroup G} :
      K Subgroup.centralizer K K.IsCommutative
      theorem Subgroup.le_centralizer {G : Type u_1} [Group G] (H : Subgroup G) [h : H.IsCommutative] :
      theorem AddSubgroup.le_centralizer {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [h : H.IsCommutative] :
      @[reducible, inline]
      abbrev Subgroup.closureCommGroupOfComm {G : Type u_1} [Group G] {k : Set G} (hcomm : xk, yk, x * y = y * x) :

      If all the elements of a set s commute, then closure s is a commutative group.

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddSubgroup.closureAddCommGroupOfComm {G : Type u_1} [AddGroup G] {k : Set G} (hcomm : xk, yk, x + y = y + x) :

        If all the elements of a set s commute, then closure s is an additive commutative group.

        Equations
        Instances For

          The conjugation action of N(H) on H.

          Equations
          @[simp]
          theorem Subgroup.instMulDistribMulActionSubtypeMemNormalizer_smul_coe {G : Type u_1} [Group G] (H : Subgroup G) (g : H.normalizer) (h : H) :
          (SMul.smul g h) = g * h * g⁻¹
          def Subgroup.normalizerMonoidHom {G : Type u_1} [Group G] (H : Subgroup G) :
          H.normalizer →* MulAut H

          The homomorphism N(H) → Aut(H) with kernel C(H).

          Equations
          Instances For
            @[simp]
            theorem Subgroup.normalizerMonoidHom_apply_symm_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : H.normalizer) (a✝ : H) :
            ((MulEquiv.symm (H.normalizerMonoidHom x)) a✝) = (↑x)⁻¹ * a✝ * x
            @[simp]
            theorem Subgroup.normalizerMonoidHom_apply_apply_coe {G : Type u_1} [Group G] (H : Subgroup G) (x : H.normalizer) (a✝ : H) :
            ((H.normalizerMonoidHom x) a✝) = x * a✝ * (↑x)⁻¹
            theorem Subgroup.normalizerMonoidHom_ker {G : Type u_1} [Group G] (H : Subgroup G) :
            H.normalizerMonoidHom.ker = (Subgroup.centralizer H).subgroupOf H.normalizer