Tensor products of direct sums #
This file shows that taking TensorProduct
s commutes with taking DirectSum
s in both arguments.
Main results #
noncomputable def
TensorProduct.directSum
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
(M₁ : ι₁ → Type w₁)
(M₂ : ι₂ → Type w₂)
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
:
TensorProduct R (DirectSum ι₁ fun (i₁ : ι₁) => M₁ i₁) (DirectSum ι₂ fun (i₂ : ι₂) => M₂ i₂) ≃ₗ[S] DirectSum (ι₁ × ι₂) fun (i : ι₁ × ι₂) => TensorProduct R (M₁ i.1) (M₂ i.2)
The linear equivalence (⨁ i₁, M₁ i₁) ⊗ (⨁ i₂, M₂ i₂) ≃ (⨁ i₁, ⨁ i₂, M₁ i₁ ⊗ M₂ i₂)
, i.e.
"tensor product distributes over direct sum".
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
TensorProduct.directSumLeft
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
(M₁ : ι₁ → Type w₁)
(M₂' : Type w₂')
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
:
TensorProduct R (DirectSum ι₁ fun (i₁ : ι₁) => M₁ i₁) M₂' ≃ₗ[R] DirectSum ι₁ fun (i : ι₁) => TensorProduct R (M₁ i) M₂'
Tensor products distribute over a direct sum on the left .
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable def
TensorProduct.directSumRight
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
(M₁' : Type w₁')
(M₂ : ι₂ → Type w₂)
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
:
TensorProduct R M₁' (DirectSum ι₂ fun (i : ι₂) => M₂ i) ≃ₗ[R] DirectSum ι₂ fun (i : ι₂) => TensorProduct R M₁' (M₂ i)
Tensor products distribute over a direct sum on the right.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
TensorProduct.directSum_lof_tmul_lof
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
{M₁ : ι₁ → Type w₁}
{M₂ : ι₂ → Type w₂}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
(i₁ : ι₁)
(m₁ : M₁ i₁)
(i₂ : ι₂)
(m₂ : M₂ i₂)
:
(TensorProduct.directSum R S M₁ M₂) ((DirectSum.lof S ι₁ M₁ i₁) m₁ ⊗ₜ[R] (DirectSum.lof R ι₂ M₂ i₂) m₂) = (DirectSum.lof S (ι₁ × ι₂) (fun (i : ι₁ × ι₂) => TensorProduct R (M₁ i.1) (M₂ i.2)) (i₁, i₂)) (m₁ ⊗ₜ[R] m₂)
@[simp]
theorem
TensorProduct.directSum_symm_lof_tmul
(R : Type u)
[CommSemiring R]
(S : Type u_1)
[Semiring S]
[Algebra R S]
{ι₁ : Type v₁}
{ι₂ : Type v₂}
[DecidableEq ι₁]
[DecidableEq ι₂]
{M₁ : ι₁ → Type w₁}
{M₂ : ι₂ → Type w₂}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[(i₁ : ι₁) → Module R (M₁ i₁)]
[(i₂ : ι₂) → Module R (M₂ i₂)]
[(i₁ : ι₁) → Module S (M₁ i₁)]
[∀ (i₁ : ι₁), IsScalarTower R S (M₁ i₁)]
(i₁ : ι₁)
(m₁ : M₁ i₁)
(i₂ : ι₂)
(m₂ : M₂ i₂)
:
(TensorProduct.directSum R S M₁ M₂).symm
((DirectSum.lof S (ι₁ × ι₂) (fun (i : ι₁ × ι₂) => TensorProduct R (M₁ i.1) (M₂ i.2)) (i₁, i₂)) (m₁ ⊗ₜ[R] m₂)) = (DirectSum.lof S ι₁ M₁ i₁) m₁ ⊗ₜ[R] (DirectSum.lof R ι₂ M₂ i₂) m₂
@[simp]
theorem
TensorProduct.directSumLeft_tmul_lof
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
(i : ι₁)
(x : M₁ i)
(y : M₂')
:
(TensorProduct.directSumLeft R M₁ M₂') ((DirectSum.lof R ι₁ M₁ i) x ⊗ₜ[R] y) = (DirectSum.lof R ι₁ (fun (i : ι₁) => TensorProduct R (M₁ i) M₂') i) (x ⊗ₜ[R] y)
@[simp]
theorem
TensorProduct.directSumLeft_symm_lof_tmul
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₂']
(i : ι₁)
(x : M₁ i)
(y : M₂')
:
(TensorProduct.directSumLeft R M₁ M₂').symm
((DirectSum.lof R ι₁ (fun (i : ι₁) => TensorProduct R (M₁ i) M₂') i) (x ⊗ₜ[R] y)) = (DirectSum.lof R ι₁ M₁ i) x ⊗ₜ[R] y
@[simp]
theorem
TensorProduct.directSumRight_tmul_lof
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
{M₁' : Type w₁'}
{M₂ : ι₂ → Type w₂}
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
(x : M₁')
(i : ι₂)
(y : M₂ i)
:
(TensorProduct.directSumRight R M₁' M₂) (x ⊗ₜ[R] (DirectSum.lof R ι₂ M₂ i) y) = (DirectSum.lof R ι₂ (fun (i : ι₂) => TensorProduct R M₁' (M₂ i)) i) (x ⊗ₜ[R] y)
@[simp]
theorem
TensorProduct.directSumRight_symm_lof_tmul
(R : Type u)
[CommSemiring R]
{ι₂ : Type v₂}
[DecidableEq ι₂]
{M₁' : Type w₁'}
{M₂ : ι₂ → Type w₂}
[AddCommMonoid M₁']
[(i₂ : ι₂) → AddCommMonoid (M₂ i₂)]
[Module R M₁']
[(i₂ : ι₂) → Module R (M₂ i₂)]
(x : M₁')
(i : ι₂)
(y : M₂ i)
:
(TensorProduct.directSumRight R M₁' M₂).symm
((DirectSum.lof R ι₂ (fun (i : ι₂) => TensorProduct R M₁' (M₂ i)) i) (x ⊗ₜ[R] y)) = x ⊗ₜ[R] (DirectSum.lof R ι₂ M₂ i) y
theorem
TensorProduct.directSumRight_comp_rTensor
(R : Type u)
[CommSemiring R]
{ι₁ : Type v₁}
[DecidableEq ι₁]
{M₁ : ι₁ → Type w₁}
{M₁' : Type w₁'}
{M₂' : Type w₂'}
[(i₁ : ι₁) → AddCommMonoid (M₁ i₁)]
[AddCommMonoid M₁']
[AddCommMonoid M₂']
[(i₁ : ι₁) → Module R (M₁ i₁)]
[Module R M₁']
[Module R M₂']
(f : M₁' →ₗ[R] M₂')
:
↑(TensorProduct.directSumRight R M₂' M₁) ∘ₗ LinearMap.rTensor (DirectSum ι₁ fun (i : ι₁) => M₁ i) f = (DirectSum.lmap fun (x : ι₁) => LinearMap.rTensor (M₁ x) f) ∘ₗ ↑(TensorProduct.directSumRight R M₁' M₁)