Finsupp
s supported on a given submodule #
Finsupp.restrictDom
:Finsupp.filter
as a linear map toFinsupp.supported s
;Finsupp.supported R R s
and codomainSubmodule.span R (v '' s)
;Finsupp.supportedEquivFinsupp
: a linear equivalence between the functionsα →₀ M
supported ons
and the functionss →₀ M
;Finsupp.domLCongr
: aLinearEquiv
version ofFinsupp.domCongr
;Finsupp.congr
: if the setss
andt
are equivalent, thensupported M R s
is equivalent tosupported M R t
;
Tags #
function with finite support, module, linear algebra
def
Finsupp.supported
{α : Type u_1}
(M : Type u_2)
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
:
Finsupp.supported M R s
is the R
-submodule of all p : α →₀ M
such that p.support ⊆ s
.
Equations
- Finsupp.supported M R s = { carrier := {p : α →₀ M | ↑p.support ⊆ s}, add_mem' := ⋯, zero_mem' := ⋯, smul_mem' := ⋯ }
Instances For
theorem
Finsupp.mem_supported
{α : Type u_1}
{M : Type u_2}
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s : Set α}
(p : α →₀ M)
:
p ∈ Finsupp.supported M R s ↔ ↑p.support ⊆ s
theorem
Finsupp.mem_supported'
{α : Type u_1}
{M : Type u_2}
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s : Set α}
(p : α →₀ M)
:
p ∈ Finsupp.supported M R s ↔ ∀ x ∉ s, p x = 0
theorem
Finsupp.mem_supported_support
{α : Type u_1}
{M : Type u_2}
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
(p : α →₀ M)
:
p ∈ Finsupp.supported M R ↑p.support
theorem
Finsupp.single_mem_supported
{α : Type u_1}
{M : Type u_2}
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s : Set α}
{a : α}
(b : M)
(h : a ∈ s)
:
Finsupp.single a b ∈ Finsupp.supported M R s
theorem
Finsupp.supported_eq_span_single
{α : Type u_1}
(R : Type u_5)
[Semiring R]
(s : Set α)
:
Finsupp.supported R R s = Submodule.span R ((fun (i : α) => Finsupp.single i 1) '' s)
def
Finsupp.restrictDom
{α : Type u_1}
(M : Type u_2)
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
[DecidablePred fun (x : α) => x ∈ s]
:
(α →₀ M) →ₗ[R] ↥(Finsupp.supported M R s)
Interpret Finsupp.filter s
as a linear map from α →₀ M
to supported M R s
.
Equations
- Finsupp.restrictDom M R s = LinearMap.codRestrict (Finsupp.supported M R s) { toFun := Finsupp.filter fun (x : α) => x ∈ s, map_add' := ⋯, map_smul' := ⋯ } ⋯
Instances For
@[simp]
theorem
Finsupp.restrictDom_apply
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
(l : α →₀ M)
[DecidablePred fun (x : α) => x ∈ s]
:
↑((Finsupp.restrictDom M R s) l) = Finsupp.filter (fun (x : α) => x ∈ s) l
theorem
Finsupp.restrictDom_comp_subtype
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
[DecidablePred fun (x : α) => x ∈ s]
:
Finsupp.restrictDom M R s ∘ₗ (Finsupp.supported M R s).subtype = LinearMap.id
theorem
Finsupp.range_restrictDom
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
[DecidablePred fun (x : α) => x ∈ s]
:
LinearMap.range (Finsupp.restrictDom M R s) = ⊤
theorem
Finsupp.supported_mono
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s t : Set α}
(st : s ⊆ t)
:
Finsupp.supported M R s ≤ Finsupp.supported M R t
@[simp]
theorem
Finsupp.supported_empty
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
Finsupp.supported M R ∅ = ⊥
@[simp]
theorem
Finsupp.supported_univ
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
:
Finsupp.supported M R Set.univ = ⊤
theorem
Finsupp.supported_iUnion
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{δ : Type u_7}
(s : δ → Set α)
:
Finsupp.supported M R (⋃ (i : δ), s i) = ⨆ (i : δ), Finsupp.supported M R (s i)
theorem
Finsupp.supported_union
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s t : Set α)
:
Finsupp.supported M R (s ∪ t) = Finsupp.supported M R s ⊔ Finsupp.supported M R t
theorem
Finsupp.supported_iInter
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{ι : Type u_7}
(s : ι → Set α)
:
Finsupp.supported M R (⋂ (i : ι), s i) = ⨅ (i : ι), Finsupp.supported M R (s i)
theorem
Finsupp.supported_inter
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s t : Set α)
:
Finsupp.supported M R (s ∩ t) = Finsupp.supported M R s ⊓ Finsupp.supported M R t
theorem
Finsupp.disjoint_supported_supported
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{s t : Set α}
(h : Disjoint s t)
:
Disjoint (Finsupp.supported M R s) (Finsupp.supported M R t)
theorem
Finsupp.disjoint_supported_supported_iff
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
[Nontrivial M]
{s t : Set α}
:
Disjoint (Finsupp.supported M R s) (Finsupp.supported M R t) ↔ Disjoint s t
def
Finsupp.supportedEquivFinsupp
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
:
↥(Finsupp.supported M R s) ≃ₗ[R] ↑s →₀ M
Interpret Finsupp.restrictSupportEquiv
as a linear equivalence between
supported M R s
and s →₀ M
.
Equations
- Finsupp.supportedEquivFinsupp s = (Finsupp.restrictSupportEquiv s M).toLinearEquiv ⋯
Instances For
@[simp]
theorem
Finsupp.supportedEquivFinsupp_apply_toFun
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
(a✝ : ↥(Finsupp.supported M R s))
(a✝¹ : { x : α // x ∈ s })
:
((Finsupp.supportedEquivFinsupp s) a✝) a✝¹ = ↑a✝ ↑a✝¹
@[simp]
theorem
Finsupp.supportedEquivFinsupp_symm_apply_coe_toFun
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
(a✝ : ↑s →₀ M)
(a : α)
:
↑((Finsupp.supportedEquivFinsupp s).symm a✝) a = if h : a ∈ s then a✝ ⟨a, h⟩ else 0
@[simp]
theorem
Finsupp.supportedEquivFinsupp_symm_apply_coe_support_val
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
(a✝ : ↑s →₀ M)
:
(↑((Finsupp.supportedEquivFinsupp s).symm a✝)).support.val = Multiset.map Subtype.val a✝.support.val
@[simp]
theorem
Finsupp.supportedEquivFinsupp_apply_support_val
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
(a✝ : ↥(Finsupp.supported M R s))
:
((Finsupp.supportedEquivFinsupp s) a✝).support.val = Multiset.map (fun (x : { x : α // x ∈ Finset.filter (fun (x : α) => x ∈ s) (↑a✝).support }) => ⟨↑x, ⋯⟩)
(Multiset.filter (fun (x : α) => x ∈ s) (↑a✝).support.val).attach
@[simp]
theorem
Finsupp.supportedEquivFinsupp_symm_apply_coe
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
(s : Set α)
[DecidablePred fun (x : α) => x ∈ s]
(f : ↑s →₀ M)
:
↑((Finsupp.supportedEquivFinsupp s).symm f) = f.extendDomain
theorem
Finsupp.supported_comap_lmapDomain
{α : Type u_1}
(M : Type u_2)
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{α' : Type u_7}
(f : α → α')
(s : Set α')
:
Finsupp.supported M R (f ⁻¹' s) ≤ Submodule.comap (Finsupp.lmapDomain M R f) (Finsupp.supported M R s)
theorem
Finsupp.lmapDomain_supported
{α : Type u_1}
(M : Type u_2)
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{α' : Type u_7}
(f : α → α')
(s : Set α)
:
Submodule.map (Finsupp.lmapDomain M R f) (Finsupp.supported M R s) = Finsupp.supported M R (f '' s)
theorem
Finsupp.lmapDomain_disjoint_ker
{α : Type u_1}
(M : Type u_2)
(R : Type u_5)
[Semiring R]
[AddCommMonoid M]
[Module R M]
{α' : Type u_7}
(f : α → α')
{s : Set α}
(H : ∀ a ∈ s, ∀ b ∈ s, f a = f b → a = b)
:
Disjoint (Finsupp.supported M R s) (LinearMap.ker (Finsupp.lmapDomain M R f))
noncomputable def
Finsupp.congr
{α : Type u_1}
{M : Type u_2}
{R : Type u_5}
[Semiring R]
[AddCommMonoid M]
[Module R M]
{α' : Type u_7}
(s : Set α)
(t : Set α')
(e : ↑s ≃ ↑t)
:
↥(Finsupp.supported M R s) ≃ₗ[R] ↥(Finsupp.supported M R t)
An equivalence of sets induces a linear equivalence of Finsupp
s supported on those sets.
Equations
- Finsupp.congr s t e = Finsupp.supportedEquivFinsupp s ≪≫ₗ (Finsupp.domLCongr e ≪≫ₗ (Finsupp.supportedEquivFinsupp t).symm)