Nondegeneracy of the polarization on a finite root pairing #
We show that if the base ring of a finite root pairing is linearly ordered, then the canonical
bilinear form is root-positive and positive-definite on the span of roots.
From these facts, it is easy to show that Coxeter weights in a finite root pairing are bounded
above by 4. Thus, the pairings of roots and coroots in a root pairing are restricted to the
interval [-4, 4]
. Furthermore, a linearly independent pair of roots cannot have Coxeter weight 4.
For the case of crystallographic root pairings, we are thus reduced to a finite set of possible
options for each pair.
Another application is to the faithfulness of the Weyl group action on roots, and finiteness of the
Weyl group.
Main results: #
RootPairing.rootForm_rootPositive
:RootForm
is root-positive.RootPairing.polarization_domRestrict_injective
: The polarization restricted to the span of roots is injective.RootPairing.rootForm_pos_of_nonzero
:RootForm
is strictly positive on non-zero linear combinations of roots. This gives us a convenient way to eliminate certain Dynkin diagrams from the classification, since it suffices to produce a nonzero linear combination of simple roots with non-positive norm.
References: #
- [N. Bourbaki, Lie groups and {L}ie algebras. {C}hapters 4--6][bourbaki1968]
- [M. Demazure, SGA III, Expos'{e} XXI, Don'{e}es Radicielles][demazure1970]
Todo #
- Weyl-invariance of
RootForm
andCorootForm
- Faithfulness of Weyl group perm action, and finiteness of Weyl group, over ordered rings.
- Relation to Coxeter weight. In particular, positivity constraints for finite root pairings mean we restrict to weights between 0 and 4.
theorem
RootPairing.rootForm_rootPositive
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
P.IsRootPositive P.RootForm
instance
RootPairing.instFiniteSubtypeMemSubmoduleRootSpan
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
Module.Finite R ↥P.rootSpan
Equations
- ⋯ = ⋯
instance
RootPairing.instFiniteSubtypeMemSubmoduleCorootSpan
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
Module.Finite R ↥P.corootSpan
Equations
- ⋯ = ⋯
@[simp]
theorem
RootPairing.finrank_rootSpan_map_polarization_eq_finrank_corootSpan
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
Module.finrank R ↥(Submodule.map P.Polarization P.rootSpan) = Module.finrank R ↥P.corootSpan
theorem
RootPairing.finrank_corootSpan_eq
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
Module.finrank R ↥P.corootSpan = Module.finrank R ↥P.rootSpan
theorem
RootPairing.disjoint_rootSpan_ker_polarization
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
Disjoint P.rootSpan (LinearMap.ker P.Polarization)
theorem
RootPairing.mem_ker_polarization_of_rootForm_self_eq_zero
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{x : M}
(hx : (P.RootForm x) x = 0)
:
x ∈ LinearMap.ker P.Polarization
theorem
RootPairing.eq_zero_of_mem_rootSpan_of_rootForm_self_eq_zero
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{x : M}
(hx : x ∈ P.rootSpan)
(hx' : (P.RootForm x) x = 0)
:
x = 0
theorem
RootSystem.rootForm_anisotropic
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootSystem ι R M N)
:
(LinearMap.BilinMap.toQuadraticMap P.RootForm).Anisotropic
theorem
RootPairing.rootForm_pos_of_nonzero
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
{x : M}
(hx : x ∈ P.rootSpan)
(h : x ≠ 0)
:
0 < (P.RootForm x) x
theorem
RootPairing.rootForm_restrict_nondegenerate
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Fintype ι]
[LinearOrderedCommRing R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
(P : RootPairing ι R M N)
:
LinearMap.Nondegenerate (P.RootForm.restrict P.rootSpan)