Documentation

Mathlib.MeasureTheory.Function.AEEqOfLIntegral

From equality of integrals to equality of functions #

This file provides various statements of the general form "if two functions have the same integral on all sets, then they are equal almost everywhere". The different lemmas use various hypotheses on the class of functions, on the target space or on the possible finiteness of the measure.

This file is about Lebesgue integrals. See the file AEEqOfIntegral for Bochner integrals.

Main statements #

The results listed below apply to two functions f, g, under the hypothesis that for all measurable sets s with finite measure, ∫⁻ x in s, f x ∂μ = ∫⁻ x in s, g x ∂μ. The conclusion is then f =ᵐ[μ] g. The main lemmas are:

theorem MeasureTheory.ae_const_le_iff_forall_lt_measure_zero {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {β : Type u_2} [LinearOrder β] [TopologicalSpace β] [OrderTopology β] [FirstCountableTopology β] (f : αβ) (c : β) :
(∀ᵐ (x : α) ∂μ, c f x) b < c, μ {x : α | f x b} = 0
theorem MeasureTheory.ae_le_const_iff_forall_gt_measure_zero {α : Type u_1} {m0 : MeasurableSpace α} {β : Type u_2} [LinearOrder β] [TopologicalSpace β] [OrderTopology β] [FirstCountableTopology β] {μ : MeasureTheory.Measure α} (f : αβ) (c : β) :
(∀ᵐ (x : α) ∂μ, f x c) ∀ (b : β), c < bμ {x : α | b f x} = 0
theorem MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : AEMeasurable f μ) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ ∫⁻ (x : α) in s, g xμ) :
f ≤ᵐ[μ] g
@[deprecated MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite₀ (since := "2024-06-29")]
theorem MeasureTheory.ae_le_of_forall_set_lintegral_le_of_sigmaFinite₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : AEMeasurable f μ) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ ∫⁻ (x : α) in s, g xμ) :
f ≤ᵐ[μ] g

Alias of MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite₀.

theorem MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : Measurable f) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ ∫⁻ (x : α) in s, g xμ) :
f ≤ᵐ[μ] g
@[deprecated MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite (since := "2024-06-29")]
theorem MeasureTheory.ae_le_of_forall_set_lintegral_le_of_sigmaFinite {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : Measurable f) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ ∫⁻ (x : α) in s, g xμ) :
f ≤ᵐ[μ] g

Alias of MeasureTheory.ae_le_of_forall_setLIntegral_le_of_sigmaFinite.

theorem MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g
@[deprecated MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite₀ (since := "2024-06-29")]
theorem MeasureTheory.ae_eq_of_forall_set_lintegral_eq_of_sigmaFinite₀ {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g

Alias of MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite₀.

theorem MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : Measurable f) (hg : Measurable g) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g
@[deprecated MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite (since := "2024-06-29")]
theorem MeasureTheory.ae_eq_of_forall_set_lintegral_eq_of_sigmaFinite {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : Measurable f) (hg : Measurable g) (h : ∀ (s : Set α), MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g

Alias of MeasureTheory.ae_eq_of_forall_setLIntegral_eq_of_sigmaFinite.

theorem MeasureTheory.AEMeasurable.ae_eq_of_forall_setLIntegral_eq {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f xμ ) (hgi : ∫⁻ (x : α), g xμ ) (hfg : ∀ ⦃s : Set α⦄, MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g
@[deprecated MeasureTheory.AEMeasurable.ae_eq_of_forall_setLIntegral_eq (since := "2024-06-29")]
theorem MeasureTheory.AEMeasurable.ae_eq_of_forall_set_lintegral_eq {α : Type u_1} {m0 : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f xμ ) (hgi : ∫⁻ (x : α), g xμ ) (hfg : ∀ ⦃s : Set α⦄, MeasurableSet sμ s < ∫⁻ (x : α) in s, f xμ = ∫⁻ (x : α) in s, g xμ) :
f =ᵐ[μ] g

Alias of MeasureTheory.AEMeasurable.ae_eq_of_forall_setLIntegral_eq.

theorem MeasureTheory.withDensity_eq_iff_of_sigmaFinite {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [MeasureTheory.SigmaFinite μ] {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) :
μ.withDensity f = μ.withDensity g f =ᵐ[μ] g
theorem MeasureTheory.withDensity_eq_iff {α : Type u_1} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} {f g : αENNReal} (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hfi : ∫⁻ (x : α), f xμ ) :
μ.withDensity f = μ.withDensity g f =ᵐ[μ] g