Measurability of real and complex functions #
We show that most standard real and complex functions are measurable, notably exp
, cos
, sin
,
cosh
, sinh
, log
, pow
, arcsin
, arccos
.
See also MeasureTheory.Function.SpecialFunctions.Arctan
and
MeasureTheory.Function.SpecialFunctions.Inner
, which have been split off to minimize imports.
theorem
Real.measurable_of_measurable_exp
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable fun (x : α) => Real.exp (f x))
:
theorem
Real.aemeasurable_of_aemeasurable_exp
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : MeasureTheory.Measure α}
(hf : AEMeasurable (fun (x : α) => Real.exp (f x)) μ)
:
AEMeasurable f μ
theorem
Real.aemeasurable_of_aemeasurable_exp_mul
{α : Type u_1}
{x✝ : MeasurableSpace α}
{f : α → ℝ}
{μ : MeasureTheory.Measure α}
{t : ℝ}
(ht : t ≠ 0)
(hf : AEMeasurable (fun (x : α) => Real.exp (t * f x)) μ)
:
AEMeasurable f μ
theorem
Measurable.exp
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.exp (f x)
theorem
Measurable.log
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.log (f x)
theorem
Measurable.cos
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.cos (f x)
theorem
Measurable.sin
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.sin (f x)
theorem
Measurable.cosh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.cosh (f x)
theorem
Measurable.sinh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => Real.sinh (f x)
theorem
Measurable.sqrt
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℝ}
(hf : Measurable f)
:
Measurable fun (x : α) => √(f x)
theorem
AEMeasurable.exp
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.exp (f x)) μ
theorem
AEMeasurable.log
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.log (f x)) μ
theorem
AEMeasurable.cos
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.cos (f x)) μ
theorem
AEMeasurable.sin
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.sin (f x)) μ
theorem
AEMeasurable.cosh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.cosh (f x)) μ
theorem
AEMeasurable.sinh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Real.sinh (f x)) μ
theorem
AEMeasurable.sqrt
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℝ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => √(f x)) μ
theorem
Measurable.cexp
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.exp (f x)
theorem
Measurable.ccos
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.cos (f x)
theorem
Measurable.csin
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.sin (f x)
theorem
Measurable.ccosh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.cosh (f x)
theorem
Measurable.csinh
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.sinh (f x)
theorem
Measurable.carg
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => (f x).arg
theorem
Measurable.clog
{α : Type u_1}
{m : MeasurableSpace α}
{f : α → ℂ}
(hf : Measurable f)
:
Measurable fun (x : α) => Complex.log (f x)
theorem
AEMeasurable.cexp
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.exp (f x)) μ
theorem
AEMeasurable.ccos
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.cos (f x)) μ
theorem
AEMeasurable.csin
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.sin (f x)) μ
theorem
AEMeasurable.ccosh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.cosh (f x)) μ
theorem
AEMeasurable.csinh
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.sinh (f x)) μ
theorem
AEMeasurable.carg
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => (f x).arg) μ
theorem
AEMeasurable.clog
{α : Type u_1}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : α → ℂ}
(hf : AEMeasurable f μ)
:
AEMeasurable (fun (x : α) => Complex.log (f x)) μ