Almost everywhere disjoint sets #
We say that sets s
and t
are μ
-a.e. disjoint (see MeasureTheory.AEDisjoint
) if their
intersection has measure zero. This assumption can be used instead of Disjoint
in most theorems in
measure theory.
def
MeasureTheory.AEDisjoint
{α : Type u_2}
{m : MeasurableSpace α}
(μ : MeasureTheory.Measure α)
(s t : Set α)
:
Two sets are said to be μ
-a.e. disjoint if their intersection has measure zero.
Equations
- MeasureTheory.AEDisjoint μ s t = (μ (s ∩ t) = 0)
Instances For
theorem
MeasureTheory.exists_null_pairwise_disjoint_diff
{ι : Type u_1}
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
[Countable ι]
{s : ι → Set α}
(hd : Pairwise (Function.onFun (MeasureTheory.AEDisjoint μ) s))
:
∃ (t : ι → Set α),
(∀ (i : ι), MeasurableSet (t i)) ∧ (∀ (i : ι), μ (t i) = 0) ∧ Pairwise (Function.onFun Disjoint fun (i : ι) => s i \ t i)
If s : ι → Set α
is a countable family of pairwise a.e. disjoint sets, then there exists a
family of measurable null sets t i
such that s i \ t i
are pairwise disjoint.
theorem
MeasureTheory.AEDisjoint.eq
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
theorem
MeasureTheory.AEDisjoint.symm
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
MeasureTheory.AEDisjoint μ t s
theorem
MeasureTheory.AEDisjoint.symmetric
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
:
theorem
MeasureTheory.AEDisjoint.comm
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
:
MeasureTheory.AEDisjoint μ s t ↔ MeasureTheory.AEDisjoint μ t s
theorem
Disjoint.aedisjoint
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : Disjoint s t)
:
MeasureTheory.AEDisjoint μ s t
theorem
Pairwise.aedisjoint
{ι : Type u_1}
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : ι → Set α}
(hf : Pairwise (Function.onFun Disjoint f))
:
theorem
Set.PairwiseDisjoint.aedisjoint
{ι : Type u_1}
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{f : ι → Set α}
{s : Set ι}
(hf : s.PairwiseDisjoint f)
:
s.Pairwise (Function.onFun (MeasureTheory.AEDisjoint μ) f)
theorem
MeasureTheory.AEDisjoint.mono_ae
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u v : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
(hu : u ≤ᵐ[μ] s)
(hv : v ≤ᵐ[μ] t)
:
MeasureTheory.AEDisjoint μ u v
theorem
MeasureTheory.AEDisjoint.mono
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u v : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
(hu : u ⊆ s)
(hv : v ⊆ t)
:
MeasureTheory.AEDisjoint μ u v
theorem
MeasureTheory.AEDisjoint.congr
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u v : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
(hu : u =ᵐ[μ] s)
(hv : v =ᵐ[μ] t)
:
MeasureTheory.AEDisjoint μ u v
@[simp]
theorem
MeasureTheory.AEDisjoint.iUnion_left_iff
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{t : Set α}
{ι : Sort u_3}
[Countable ι]
{s : ι → Set α}
:
MeasureTheory.AEDisjoint μ (⋃ (i : ι), s i) t ↔ ∀ (i : ι), MeasureTheory.AEDisjoint μ (s i) t
@[simp]
theorem
MeasureTheory.AEDisjoint.iUnion_right_iff
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
{ι : Sort u_3}
[Countable ι]
{t : ι → Set α}
:
MeasureTheory.AEDisjoint μ s (⋃ (i : ι), t i) ↔ ∀ (i : ι), MeasureTheory.AEDisjoint μ s (t i)
@[simp]
theorem
MeasureTheory.AEDisjoint.union_left_iff
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u : Set α}
:
MeasureTheory.AEDisjoint μ (s ∪ t) u ↔ MeasureTheory.AEDisjoint μ s u ∧ MeasureTheory.AEDisjoint μ t u
@[simp]
theorem
MeasureTheory.AEDisjoint.union_right_iff
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u : Set α}
:
MeasureTheory.AEDisjoint μ s (t ∪ u) ↔ MeasureTheory.AEDisjoint μ s t ∧ MeasureTheory.AEDisjoint μ s u
theorem
MeasureTheory.AEDisjoint.union_left
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u : Set α}
(hs : MeasureTheory.AEDisjoint μ s u)
(ht : MeasureTheory.AEDisjoint μ t u)
:
MeasureTheory.AEDisjoint μ (s ∪ t) u
theorem
MeasureTheory.AEDisjoint.union_right
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t u : Set α}
(ht : MeasureTheory.AEDisjoint μ s t)
(hu : MeasureTheory.AEDisjoint μ s u)
:
MeasureTheory.AEDisjoint μ s (t ∪ u)
theorem
MeasureTheory.AEDisjoint.diff_ae_eq_left
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
theorem
MeasureTheory.AEDisjoint.diff_ae_eq_right
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
theorem
MeasureTheory.AEDisjoint.measure_diff_left
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
theorem
MeasureTheory.AEDisjoint.measure_diff_right
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
theorem
MeasureTheory.AEDisjoint.exists_disjoint_diff
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : MeasureTheory.AEDisjoint μ s t)
:
If s
and t
are μ
-a.e. disjoint, then s \ u
and t
are disjoint for some measurable null
set u
.
theorem
MeasureTheory.AEDisjoint.of_null_right
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : μ t = 0)
:
MeasureTheory.AEDisjoint μ s t
theorem
MeasureTheory.AEDisjoint.of_null_left
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s t : Set α}
(h : μ s = 0)
:
MeasureTheory.AEDisjoint μ s t
theorem
MeasureTheory.aedisjoint_compl_left
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
:
theorem
MeasureTheory.aedisjoint_compl_right
{α : Type u_2}
{m : MeasurableSpace α}
{μ : MeasureTheory.Measure α}
{s : Set α}
: