Documentation

Mathlib.MeasureTheory.Measure.Haar.NormedSpace

Basic properties of Haar measures on real vector spaces #

theorem MeasureTheory.Measure.integral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) (R : ) :
∫ (x : E), f (R x)μ = |(R ^ Module.finrank E)⁻¹| ∫ (x : E), f xμ

The integral of f (R • x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_smul_of_nonneg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) (R : ) {hR : 0 R} :
∫ (x : E), f (R x)μ = (R ^ Module.finrank E)⁻¹ ∫ (x : E), f xμ

The integral of f (R • x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_inv_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) (R : ) :
∫ (x : E), f (R⁻¹ x)μ = |R ^ Module.finrank E| ∫ (x : E), f xμ

The integral of f (R⁻¹ • x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.integral_comp_inv_smul_of_nonneg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {R : } (hR : 0 R) :
∫ (x : E), f (R⁻¹ x)μ = R ^ Module.finrank E ∫ (x : E), f xμ

The integral of f (R⁻¹ • x) with respect to an additive Haar measure is a multiple of the integral of f. The formula we give works even when f is not integrable or R = 0 thanks to the convention that a non-integrable function has integral zero.

theorem MeasureTheory.Measure.setIntegral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {R : } (s : Set E) (hR : R 0) :
∫ (x : E) in s, f (R x)μ = |(R ^ Module.finrank E)⁻¹| ∫ (x : E) in R s, f xμ
@[deprecated MeasureTheory.Measure.setIntegral_comp_smul (since := "2024-04-17")]
theorem MeasureTheory.Measure.set_integral_comp_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {R : } (s : Set E) (hR : R 0) :
∫ (x : E) in s, f (R x)μ = |(R ^ Module.finrank E)⁻¹| ∫ (x : E) in R s, f xμ

Alias of MeasureTheory.Measure.setIntegral_comp_smul.

theorem MeasureTheory.Measure.setIntegral_comp_smul_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {R : } (s : Set E) (hR : 0 < R) :
∫ (x : E) in s, f (R x)μ = (R ^ Module.finrank E)⁻¹ ∫ (x : E) in R s, f xμ
@[deprecated MeasureTheory.Measure.setIntegral_comp_smul_of_pos (since := "2024-04-17")]
theorem MeasureTheory.Measure.set_integral_comp_smul_of_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {R : } (s : Set E) (hR : 0 < R) :
∫ (x : E) in s, f (R x)μ = (R ^ Module.finrank E)⁻¹ ∫ (x : E) in R s, f xμ

Alias of MeasureTheory.Measure.setIntegral_comp_smul_of_pos.

theorem MeasureTheory.Measure.integral_comp_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (g : F) (a : ) :
∫ (x : ), g (a * x) = |a⁻¹| ∫ (y : ), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_left {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (g : F) (a : ) :
∫ (x : ), g (a⁻¹ * x) = |a| ∫ (y : ), g y
theorem MeasureTheory.Measure.integral_comp_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (g : F) (a : ) :
∫ (x : ), g (x * a) = |a⁻¹| ∫ (y : ), g y
theorem MeasureTheory.Measure.integral_comp_inv_mul_right {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (g : F) (a : ) :
∫ (x : ), g (x * a⁻¹) = |a| ∫ (y : ), g y
theorem MeasureTheory.Measure.integral_comp_div {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (g : F) (a : ) :
∫ (x : ), g (x / a) = |a| ∫ (y : ), g y
theorem MeasureTheory.integrable_comp_smul_iff {F : Type u_1} [NormedAddCommGroup F] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] (μ : MeasureTheory.Measure E) [μ.IsAddHaarMeasure] (f : EF) {R : } (hR : R 0) :
MeasureTheory.Integrable (fun (x : E) => f (R x)) μ MeasureTheory.Integrable f μ
theorem MeasureTheory.Integrable.comp_smul {F : Type u_1} [NormedAddCommGroup F] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] [MeasurableSpace E] [BorelSpace E] [FiniteDimensional E] {μ : MeasureTheory.Measure E} [μ.IsAddHaarMeasure] {f : EF} (hf : MeasureTheory.Integrable f μ) {R : } (hR : R 0) :
MeasureTheory.Integrable (fun (x : E) => f (R x)) μ
theorem MeasureTheory.integral_comp {E' : Type u_2} {F' : Type u_3} {A : Type u_4} [NormedAddCommGroup E'] [InnerProductSpace E'] [FiniteDimensional E'] [MeasurableSpace E'] [BorelSpace E'] [NormedAddCommGroup F'] [InnerProductSpace F'] [FiniteDimensional F'] [MeasurableSpace F'] [BorelSpace F'] (f : E' ≃ₗᵢ[] F') [NormedAddCommGroup A] [NormedSpace A] (g : F'A) :
∫ (x : E'), g (f x) = ∫ (y : F'), g y