Convergence of L-series #
We define LSeries.abscissaOfAbsConv f
(as an EReal
) to be the infimum
of all real numbers x
such that the L-series of f
converges for complex arguments with
real part x
and provide some results about it.
Tags #
L-series, abscissa of convergence
The abscissa x : EReal
of absolute convergence of the L-series associated to f
:
the series converges absolutely at s
when re s > x
and does not converge absolutely
when re s < x
.
Equations
- LSeries.abscissaOfAbsConv f = sInf (Real.toEReal '' {x : ℝ | LSeriesSummable f ↑x})
Instances For
theorem
LSeriesSummable_of_abscissaOfAbsConv_lt_re
{f : ℕ → ℂ}
{s : ℂ}
(hs : LSeries.abscissaOfAbsConv f < ↑s.re)
:
LSeriesSummable f s
theorem
LSeriesSummable_lt_re_of_abscissaOfAbsConv_lt_re
{f : ℕ → ℂ}
{s : ℂ}
(hs : LSeries.abscissaOfAbsConv f < ↑s.re)
:
∃ x < s.re, LSeriesSummable f ↑x
theorem
LSeriesSummable.abscissaOfAbsConv_le
{f : ℕ → ℂ}
{s : ℂ}
(h : LSeriesSummable f s)
:
LSeries.abscissaOfAbsConv f ≤ ↑s.re
theorem
LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable
{f : ℕ → ℂ}
{x : ℝ}
(h : ∀ (y : ℝ), x < y → LSeriesSummable f ↑y)
:
theorem
LSeries.abscissaOfAbsConv_le_of_forall_lt_LSeriesSummable'
{f : ℕ → ℂ}
{x : EReal}
(h : ∀ (y : ℝ), x < ↑y → LSeriesSummable f ↑y)
:
If f
is O(1)
, then the abscissa of absolute convergence of f
is bounded above by 1
.
theorem
LSeries.summable_real_of_abscissaOfAbsConv_lt
{f : ℕ → ℝ}
{x : ℝ}
(h : (LSeries.abscissaOfAbsConv fun (x : ℕ) => ↑(f x)) < ↑x)
:
If f
is real-valued and x
is strictly greater than the abscissa of absolute convergence
of f
, then the real series ∑' n, f n / n ^ x
converges.