Documentation

Mathlib.Order.Filter.AtTopBot.CountablyGenerated

Convergence to infinity and countably generated filters #

In this file we prove that

@[instance 200]
instance Filter.atTop.isCountablyGenerated {α : Type u_1} [Preorder α] [Countable α] :
Filter.atTop.IsCountablyGenerated
@[instance 200]
instance Filter.atBot.isCountablyGenerated {α : Type u_1} [Preorder α] [Countable α] :
Filter.atBot.IsCountablyGenerated
instance Filter.instIsCountablyGeneratedAtTopProd {α : Type u_1} {β : Type u_2} [Preorder α] [Filter.atTop.IsCountablyGenerated] [Preorder β] [Filter.atTop.IsCountablyGenerated] :
Filter.atTop.IsCountablyGenerated
instance Filter.instIsCountablyGeneratedAtBotProd {α : Type u_1} {β : Type u_2} [Preorder α] [Filter.atBot.IsCountablyGenerated] [Preorder β] [Filter.atBot.IsCountablyGenerated] :
Filter.atBot.IsCountablyGenerated
instance OrderDual.instIsCountablyGeneratedAtTop {α : Type u_1} [Preorder α] [Filter.atBot.IsCountablyGenerated] :
Filter.atTop.IsCountablyGenerated
instance OrderDual.instIsCountablyGeneratedAtBot {α : Type u_1} [Preorder α] [Filter.atTop.IsCountablyGenerated] :
Filter.atBot.IsCountablyGenerated
theorem Filter.atTop_countable_basis {α : Type u_1} [Preorder α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Nonempty α] [Countable α] :
Filter.atTop.HasCountableBasis (fun (x : α) => True) Set.Ici
theorem Filter.atBot_countable_basis {α : Type u_1} [Preorder α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Nonempty α] [Countable α] :
Filter.atBot.HasCountableBasis (fun (x : α) => True) Set.Iic
theorem Filter.exists_seq_tendsto {α : Type u_1} (f : Filter α) [f.IsCountablyGenerated] [f.NeBot] :
∃ (x : α), Filter.Tendsto x Filter.atTop f

If f is a nontrivial countably generated filter, then there exists a sequence that converges to f.

theorem Filter.exists_seq_monotone_tendsto_atTop_atTop (α : Type u_3) [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Filter.atTop.IsCountablyGenerated] :
theorem Filter.exists_seq_antitone_tendsto_atTop_atBot (α : Type u_3) [Preorder α] [Nonempty α] [IsDirected α fun (x1 x2 : α) => x1 x2] [Filter.atBot.IsCountablyGenerated] :
theorem Filter.tendsto_iff_seq_tendsto {α : Type u_1} {β : Type u_2} {f : αβ} {k : Filter α} {l : Filter β} [k.IsCountablyGenerated] :

An abstract version of continuity of sequentially continuous functions on metric spaces: if a filter k is countably generated then Tendsto f k l iff for every sequence u converging to k, f ∘ u tends to l.

theorem Filter.tendsto_of_seq_tendsto {α : Type u_1} {β : Type u_2} {f : αβ} {k : Filter α} {l : Filter β} [k.IsCountablyGenerated] :
(∀ (x : α), Filter.Tendsto x Filter.atTop kFilter.Tendsto (f x) Filter.atTop l)Filter.Tendsto f k l
theorem Filter.eventually_iff_seq_eventually {ι : Type u_3} {l : Filter ι} {p : ιProp} [l.IsCountablyGenerated] :
(∀ᶠ (n : ι) in l, p n) ∀ (x : ι), Filter.Tendsto x Filter.atTop l∀ᶠ (n : ) in Filter.atTop, p (x n)
theorem Filter.frequently_iff_seq_frequently {ι : Type u_3} {l : Filter ι} {p : ιProp} [l.IsCountablyGenerated] :
(∃ᶠ (n : ι) in l, p n) ∃ (x : ι), Filter.Tendsto x Filter.atTop l ∃ᶠ (n : ) in Filter.atTop, p (x n)
theorem Filter.exists_seq_forall_of_frequently {ι : Type u_3} {l : Filter ι} {p : ιProp} [l.IsCountablyGenerated] (h : ∃ᶠ (n : ι) in l, p n) :
∃ (ns : ι), Filter.Tendsto ns Filter.atTop l ∀ (n : ), p (ns n)
theorem Filter.frequently_iff_seq_forall {ι : Type u_3} {l : Filter ι} {p : ιProp} [l.IsCountablyGenerated] :
(∃ᶠ (n : ι) in l, p n) ∃ (ns : ι), Filter.Tendsto ns Filter.atTop l ∀ (n : ), p (ns n)
theorem Filter.tendsto_of_subseq_tendsto {α : Type u_1} {ι : Type u_3} {x : ια} {f : Filter α} {l : Filter ι} [l.IsCountablyGenerated] (hxy : ∀ (ns : ι), Filter.Tendsto ns Filter.atTop l∃ (ms : ), Filter.Tendsto (fun (n : ) => x (ns (ms n))) Filter.atTop f) :

A sequence converges if every subsequence has a convergent subsequence.

theorem Filter.subseq_tendsto_of_neBot {α : Type u_1} {f : Filter α} [f.IsCountablyGenerated] {u : α} (hx : (f Filter.map u Filter.atTop).NeBot) :
∃ (θ : ), StrictMono θ Filter.Tendsto (u θ) Filter.atTop f