Convergence to ±infinity in ordered rings #
theorem
Filter.Tendsto.atTop_mul_atTop
{α : Type u_1}
{β : Type u_2}
[OrderedSemiring α]
{l : Filter β}
{f g : β → α}
(hf : Filter.Tendsto f l Filter.atTop)
(hg : Filter.Tendsto g l Filter.atTop)
:
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atTop
theorem
Filter.tendsto_mul_self_atTop
{α : Type u_1}
[OrderedSemiring α]
:
Filter.Tendsto (fun (x : α) => x * x) Filter.atTop Filter.atTop
theorem
Filter.tendsto_pow_atTop
{α : Type u_1}
[OrderedSemiring α]
{n : ℕ}
(hn : n ≠ 0)
:
Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atTop
The monomial function x^n
tends to +∞
at +∞
for any positive natural n
.
A version for positive real powers exists as tendsto_rpow_atTop
.
theorem
Filter.Tendsto.atTop_mul_atBot
{α : Type u_1}
{β : Type u_2}
[OrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Filter.Tendsto f l Filter.atTop)
(hg : Filter.Tendsto g l Filter.atBot)
:
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atBot
theorem
Filter.Tendsto.atBot_mul_atTop
{α : Type u_1}
{β : Type u_2}
[OrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Filter.Tendsto f l Filter.atBot)
(hg : Filter.Tendsto g l Filter.atTop)
:
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atBot
theorem
Filter.Tendsto.atBot_mul_atBot
{α : Type u_1}
{β : Type u_2}
[OrderedRing α]
{l : Filter β}
{f g : β → α}
(hf : Filter.Tendsto f l Filter.atBot)
(hg : Filter.Tendsto g l Filter.atBot)
:
Filter.Tendsto (fun (x : β) => f x * g x) l Filter.atTop
theorem
Filter.Tendsto.atTop_of_const_mul
{α : Type u_1}
{β : Type u_2}
[LinearOrderedSemiring α]
{l : Filter β}
{f : β → α}
{c : α}
(hc : 0 < c)
(hf : Filter.Tendsto (fun (x : β) => c * f x) l Filter.atTop)
:
theorem
Filter.Tendsto.atTop_of_mul_const
{α : Type u_1}
{β : Type u_2}
[LinearOrderedSemiring α]
{l : Filter β}
{f : β → α}
{c : α}
(hc : 0 < c)
(hf : Filter.Tendsto (fun (x : β) => f x * c) l Filter.atTop)
:
@[simp]
theorem
Filter.tendsto_pow_atTop_iff
{α : Type u_1}
[LinearOrderedSemiring α]
{n : ℕ}
:
Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atTop ↔ n ≠ 0
theorem
Filter.not_tendsto_pow_atTop_atBot
{α : Type u_1}
[LinearOrderedRing α]
{n : ℕ}
:
¬Filter.Tendsto (fun (x : α) => x ^ n) Filter.atTop Filter.atBot